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Parareal (Lions et al., 2001).
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Parareal



Parareal - Computational cost
Assume that running F over one interval [ti , ti+1] takes TF time,
and similarly for G . The cost of the serial procedure is

TSerial = NTF .

The cost of Parareal, assuming it converges in KPara iterations, is

TPara ≈ NTG +

KPara∑
k=1

(TF + (N − k)TG )

= KParaTF + (KPara + 1)(N − KPara/2)TG

While the parallel speed-up, compared to the (serial) fine solver:

SPara =
TSerial

TPara
≈

[
KPara

N
+ (KPara + 1)

(
1− KPara

2N

)
TG

TF

]−1

.

Parareal is faster when KPara < N and TG /TF << 1.

How can we improve on this? Keep G fixed and reduce KPara.



GParareal



GParareal (Pentland et al. (2023))

System Parareal GParareal* GParareal
FitzHugh–Nagumo (FHN) 11 5 5
Rossler 18 13 13
Hopf 19 10 10
Brusselator 19 NA 20
Lorenz 15 NA 11
Double Pendulum 15 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 24-30.

GParareal* refers to the original approach (Pentland et al., 2023), while
GParareal refers to our implementation.

‘NA’ stands for not available as not considered by the reference. The
results have been produced using accuracy ϵ = 5e−7.



GParareal - Computational cost
The runtime cost of GParareal is

TGPara∗ ≈ NTG +

KGPara∗∑
k=1

(TF + (N − k)TG + TGP∗(k))

= KGPara∗TF + (KGPara∗ + 1) (N − KGPara∗/2)TG + TGP∗,

where

TGP∗ :=

KGPara∗∑
k=1

TGP∗(k),

and TGP∗(k) is the wallclock time expended in using the model at
iteration k .

Given the cubic cost of matrix inversion for fitting a GP, and the
dataset size of the order O(kN) by iteration k , we have

TGP∗ =

KGPara∗∑
k=1

O(k3N3) = O(K 4
GPara∗N

3).



GParareal - Computational cost

The speed-up is

SGPara∗ ≈
[
KGPara∗

N
+ (KGPara∗ + 1)

(
1− KGPara∗

2N

)
TG

TF
+

TGP∗
NTF

]−1

.

When KPara = KGPara∗, to achieve the same speed-up SPara, we
require the total cost of the GP to be negligible compared to that
of the serial procedure.

Finally, note that the maximum speed-up achievable by any parallel
procedure that converges in K iterations, given by

SUB =
K

N
.



GParareal - Performance - Hopf bifurcations
To showcase the empirical performance of GParareal, consider a
non-linear model for the study of Hopf bifurcations (Seydel, 2009,
pg. 72; also Slide 26), defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (1)

where we note the dependence on time. In practice, we add time
as an additional coordinate yielding a d = 3 autonomous system.

Image taken from Pentland et al. (2023)



GParareal - Performance - Hopf bifurcations
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GParareal - Improvements

How can we improve? Maintain K ≤ KGPara∗ while reducing TGP∗.

The GP cost comes from the sample size O(Nk) by iteration k .
Can we reduce the sample size without affecting performance?

Yes, we can fit the model using a small subset consisting of the
nearest neighbors to the prediction point. This is sufficient to
smooth locally because very few points are empirically close in
Euclidean distance.



Nearest Neighbor GParareal
(NN-GParareal)



NN-GParareal - Key Points

▶ Whereas GParareal trains the GP once per iteration k using
the full dataset D, NN-GParareal is re-trained every time a
prediction is made and it uses a subset D ′ ⊂ D of the dataset
D, with cardinality |D ′| = m.

▶ Empirically, a fixed small value of m ∈ {15, ..., 20} is sufficient
for comparable performance to training on the whole D.

▶ Empirically, choosing the m observations to be the nearest
neighbors (NN) of the prediction point in Euclidean distance
has at least the same performance as other reasonable
approaches.

▶ This model is known as nearest neighbor Gaussian process
(NNGP) in the literature.

▶ Re-training at every prediction makes the GP globally
non-stationary, without the need to change the kernel.



NN-GParareal - Performance

System Parareal GParareal* GParareal NN-GParareal
FitzHugh–Nagumo 11 5 5 5
Rossler 18 13 13 12
Hopf 19 10 10 9
Brusselator 19 NA 20 17
Lorenz 15 NA 11 9
Double Pendulum 15 10 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 24-30.

GParareal* refers to the original approach (Pentland et al., 2023), while
GParareal refers to our implementation.

‘NA’ stands for not available as not considered by the reference. The
results have been produced using accuracy ϵ = 5e−7.



NN-GParareal - Computational Cost

Assuming NN-GParareal converges in KNN iterations, we have

TNN−GPara ≈ NTG +

KNN∑
k=1

(TF + (N − k)TG + TNNGP(k))

= KNNTF + (KNN + 1) (N − KNN/2)TG + TNNGP ,

where TNNGP :=
∑KNN

k=1 TNNGP(k), and TNNGP(k) is the cost of
using the model during iteration k ,

TNNGP(k) = (N − k)Tm
NNGP ,

Tm
NNGP is the cost of using the model to make a single prediction,

including training. It is virtually constant across k and can be
easily estimated beforehand. This follows from the constant matrix
size m ×m to be inverted.



NN-GParareal - Computational Cost

The speed-up for NN-GParareal is

SNN-GPara ≈
[
KNN

N
+ (KNN + 1)

(
1− KNN

2N

)
TG

TF
+

KNNT
m
NNGP

NTF
(N − (KNN + 1)/2)

]−1

.

The speed-up doesn’t immediately clarify whether this model is
cheaper than a normal GP. However, for a small, fixed m, the
computational complexity is loglinear in N

TNNGP =

KNN∑
k=1

(N − k)Tm
NNGP =

KNN∑
k=1

(N − k)[O(m3) + O(log(kn))]

= O(KNNNm
3) + O(KNNN log(KNNN)).

The log term comes from the nearest neighbor computation.



NN-GParareal - Performance - Hopf bifurcations
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NN-GParareal - Performance - FitzHugh-Nagumo PDE

We explore the performance of Parareal and its variants on a
high-dimensional system. We use the two-dimensional, non-linear
FitzHugh-Nagumo PDE model (Ambrosio and Françoise, 2009).
See also Slide 34.

It represents a set of cells constituted by a small nucleus of
pacemakers near the origin immersed among an assembly of
excitable cells. The simpler FHN ODE system only considers one
cell and its corresponding spike generation behavior.

We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.

We consider d̃ = 10, 12, 14, 16, corresponding to
d = 200, 288, 392, 512, and set N = 512.



NN-GParareal - Performance - FitzHugh-Nagumo PDE
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Figure: Plot of speed-ups for Parareal and its variants for the FitzHugh-Nagumo PDE
model. The speed-ups are computed according to the formulas above. For
N = 256, 512, GParareal failed to converge within the computational time budget.
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In: Comptes Rendus de l’Académie des Sciences-Series
I-Mathematics 332.7, pp. 661–668.
Lorenz, Edward N. (1963). “Deterministic nonperiodic flow”.
In: Journal of atmospheric sciences 20.2, pp. 130–141.
Nagumo, Jinichi, Suguru Arimoto, and Shuji Yoshizawa (1962).
“An active pulse transmission line simulating nerve axon”. In:
Proceedings of the IRE 50.10, pp. 2061–2070.



References III

Pentland, Kamran et al. (2023). “GParareal: a time-parallel
ODE solver using Gaussian process emulation”. In: Statistics
and Computing 33.1, p. 23.
Rasmussen, Steen et al. (1990). “The coreworld: Emergence
and evolution of cooperative structures in a computational
chemistry”. In: Physica D: Nonlinear Phenomena 42.1-3,
pp. 111–134.
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ODE/PDE Systems



Systems: FitzHugh–Nagumo

The FitzHugh-Nagumo (FHN) is a model for an animal nerve axon
(Nagumo et al., 1962). It is a reasonably easy system to learn,
does not exhibit chaotic behavior, and is commonly used
throughout the literature. It is described by the following equations

du1
dt

= c

(
u1 −

u31
3

+ u2

)
,

du2
dt

= −1

c
(u1 − a+ bu2) ,

with (a, b, c) = 0.2, 0.2, 3. We integrate over t ∈ [0, 40] using
N = 40 intervals, taking u0 = (−1, 1) as the initial condition. We
use Runge-Kutta 2 with 160 steps for the coarse solver G , and
Ruge-Kutta 4 with 1.6e5 steps for the fine solver F . This is the
same setting as Pentland et al. (2023), which allows almost direct
comparison, although our system is the normalized version of the
above, which also applies to u0. We use a (normalized) error
ϵ = 5e−7.



Systems: Rossler

The Rossler is a model for turbulence (Rössler, 1976)

du1
dt

= −u2 − u3,
du2
dt

= u1 + âu2,
du3
dt

= b̂ + u3 (u1 − ĉ) .

When (â, b̂, ĉ) = (0.2, 0.2, 5.7), it exhibits chaotic behavior. This
configuration is commonly used throughout the literature. We
integrate over t ∈ [0, 340] using N = 40 intervals, taking
u0 = (0,−6.78, 0.02) as initial condition. We use Runge-Kutta 1
with 9e4 steps for the coarse solver G , and Ruge-Kutta 4 with
4.5e8 steps for the fine solver F . This is the same setting as
Pentland et al. (2023), although, like above, we use the normalized
version and set a normalized ϵ = 5e−7.



Systems: Non-linear Hopf bifurcation

This is a non-linear model for the study of Hopf bifurcations, see
Seydel (2009, pg. 72) for a detailed explanation. The model is
defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (2)

where we note the dependence on time. To counter that, we add
time as an additional coordinate, thus yielding a d = 3 system. We
integrate over t ∈ [−20, 500] using N = 32 intervals, taking
u0 = (0.1, 0.1, 500) as initial condition. We use Runge-Kutta 1
with 2048 steps for the coarse solver G , and Ruge-Kutta 8 with
5.12e5 steps for the fine solver F . This is the same setting as
Pentland et al. (2023), although, like above, we use the normalized
version and set a normalized ϵ = 5e−7.



Systems: Brusselator

The Brusselator models an autocatalytic chemical reaction
(Lefever and Nicolis, 1971). It is a stiff, non-linear ODE, and the
following equations govern it

du1
dt

= A+ u21u2 − (B + 1)u1,

du2
dt

= Bu1 − u21u2,

where (A,B) = (1, 3). We integrate over t ∈ [0, 100] using N = 32
intervals, taking u0 = (1, 3.7) as initial condition. We use
Runge-Kutta 4 with 2.5e2 steps for the coarse solver G , and
Ruge-Kutta 4 with 2.5e4 steps for the fine solver F . We use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Double pendulum

This is a model for a double pendulum, adapted from Danby
(1997). It consists of a simple pendulum of mass m and rod length
ℓ connected to another simple pendulum of equal mass m and rod
length ℓ, acting under gravity g . The model is defined by the
following equations

du1
dt

= u3,

du2
dt

= u4,

du3
dt

=
−u23f1 (u1, u2)− u24 sin (u1 − u2)− 2 sin (u1) + cos (u1 − u2) sin (u2)

f2 (u1, u2)
,

du4
dt

=
2u23 sin (u1 − u2) + u24f1 (u1, u2) + 2 cos (u1 − u2) sin (u1)− 2 sin (u2)

f2 (u1, u2)
,

where
f1 (u1, u2) = sin (u1 − u2) cos (u1 − u2) ,

f2 (u1, u2) = 2− cos2 (u1 − u2) .



Systems: Double pendulum

In the above, m, ℓ, and g have been scaled out of the system by
letting ℓ = g . The variables u1 and u2 measure the angles between
each pendulum and the vertical axis, while u3 and u4 measure the
corresponding angular velocities.

The system exhibits chaotic behavior and is commonly used in the
literature. Based on the initial condition, it can be difficult to learn.

We integrate over t ∈ [0, 80] using N = 32 intervals, taking
u0 = (−0.5, 0, 0, 0) as initial condition. We use Runge-Kutta 1
with 3104 steps for the coarse solver G , and Ruge-Kutta 8 with
2.17e5 steps for the fine solver F . This is a similar setting as
Pentland et al. (2023, Figure 4.10), although, like above, we use
the normalized version and set a normalized ϵ = 5e−7.



Systems: Lorenz

The Lorenz system is a simplified model for weather prediction
Lorenz, 1963. With the following parameters, it is a chaotic system
governed by the equations

du1
dt

= γ1 (u2 − u1) ,

du2
dt

= γ2u1 − u1u3 − u2,

du3
dt

= u1u2 − γ3u3,

with (γ1, γ2, γ3) = (10, 28, 8/3). We integrate over t ∈ [0, 18]
using N = 50 intervals, taking u0 = (−15,−15, 20) as initial
condition. We use Runge-Kutta 4 with 3e2 steps for the coarse
solver G , and Ruge-Kutta 4 with 2.25e4 steps for the fine solver
F . We use the normalized version and set a normalized ϵ = 5e−7.



Systems: Thomas labyrinth
Thomas (1999) has proposed a particularly simple
three-dimensional system representative of a large class of
auto-catalytic models that occur frequently in chemical reactions
(Rasmussen et al., 1990), ecology (Deneubourg and Goss, 1989),
and evolution (Kauffman, 1993). It is described by the following
equations 

dx
dt = b sin y − ax ,
dy
dt = b sin z − ay ,
dz
dt = b sin x − az ,

(3)

where (a, b) = (0.5, 10). We integrate over t ∈ [0, 10] for
N = 32, 64, t ∈ [0, 40] for N = 128, and t ∈ [0, 100] for
N = 256, 512 intervals. Following Gilpin (2021), we take

u0 = (4.6722764, 5.2437205e−10,−6.4444208e−10)

as initial condition, for which the system exhibits chaotic dynamics.
Further, we use Runge-Kutta 1 with 10N steps for the coarse
solver G and Ruge-Kutta 4 with 1e9 steps for the fine solver F .



Systems: Viscous Burgers’ equation

The viscous Burgers’ equation is a fundamental PDE describing
convection-diffusion occurring in various areas of applied
mathematics. It is one-dimensional and defined as

vt = νvxx − vvx (x , t) ∈ (−L, L)× (t0, tN ], (4)

with initial condition v(x , t0) = v0(x), x ∈ [−L, L], and boundary
conditions

v(−L, t) = v(L, t), vx(−L, t) = vx(L, t), t ∈ [t0,TN ].

In the above, ν is the diffusion coefficient. We discretize the spatial
domain using finite difference (Fornberg, 1988) and d + 1 equally
spaced points xj+1 = xj +∆x , where ∆x = 2L/d and j = 0, ..., d .



Systems: Viscous Burgers’ equation

In the numerical experiments, we consider two values for the time
horizon, tN = 5 and tN = 5.9, with t0 = 0. We set N = d = 128
and take L = 1 and ν = 1/100. The discretization and finite
difference formulation imply that it is equivalent to solving a
d-dimensional system of ODEs.

We take v0(x) = 0.5(cos(92πx) + 1) as the initial condition. We
use Runge-Kutta 1 with 4N steps for the coarse solver G and
Ruge-Kutta 8 with 5.12e6 steps for the fine solver F .

We use the normalized version with a normalized ϵ = 5e−7.



Systems: FitzHugh-Nagumo PDE

The two-dimensional, non-linear FitzHugh-Nagumo PDE model
(Ambrosio and Françoise, 2009) is an extension of the ODE system
in Slide 24. It represents a set of cells constituted by a small
nucleus of pacemakers near the origin immersed among an
assembly of excitable cells. The simpler FHN ODE system only
considers one cell and its corresponding spike generation behavior.

It is defined as

vt = a∇2v + v − v3 − w − c , (x , t) ∈ (−L, L)2 × (t0, tN ]

wt = τ
(
b∇2w + v − w

)
,

(5)

with initial conditions

v(x , t0) = v0(x),w(x , t0) = w0(x), x ∈ [−L, L],



Systems: FitzHugh-Nagumo PDE

and boundary conditions

v((x ,−L), t) = v((x , L), t)

v((−L, y), t) = v((L, y), t)

vy ((x ,−L), t) = vy ((x , L), t)

vx((−L, y), t) = vx((L, y), t), t ∈ [t0, tN ].

The boundary conditions for w are equivalent and not repeated.
We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.



Systems: FitzHugh-Nagumo PDE

In the numerical experiments, we consider four values for
d̃ = 10, 12, 14, 16, corresponding to d = 200, 288, 392, 512. We set
N = 512, L = 1, t0 = 0, and take v0(x),w(0) randomly sampled
from [0, 1]d as the initial condition.

We use Ruge-Kutta 8 with 108 steps for the fine solver F . We use
the normalized version with a normalized ϵ = 5e−7.

The time span and coarse solvers depend on d̃ , Table 1 describes
their relation. This is to provide a realistic experiment where the
user would need to adjust the coarse solver based on tN − t0.



Systems: FitzHugh-Nagumo PDE

d G G steps tN
200 RK2 3N tN = 150
288 RK2 12N tN = 550
392 RK2 25N tN = 950
512 RK4 25N tN = 1100

Table: Simulation setup for the two-dimensional FitzHugh-Nagumo PDE. Adjusting
the coarse solver based on the time horizon tN makes the simulation more realistic.
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