Nearest Neighbor GParareal: Improving
Scalability of Gaussian Processes for
Parallel-in-Time Solvers

Guglielmo Gattiglio
University of Warwick

February 20, 2024

Joint work with:
Lyudmila Grigoryeva, University of St. Gallen
Massimiliano Tamborrino, University of Warwick

Parareal (Lions et al., 2001).
* Theory
= Sketch of the procedure

= Computational cost

GParareal (Pentland et al., 2023).
* Intuition
= Empirical results

» Computational cost

Nearest Neighbor GParareal New!
= |ntuition
= Empirical results

= Computational cost

Solving Lorenz

€, coarse Parareal, midway

Parareal, final %, fine

Introduction

In this talk, we consider machine-learning-based approaches to
speed up Parareal (Lions et al., 2001), a parallel-in-time solver for
ODEs and PDEs. Why is time parallelization important?

= Space parallelization has been a widely use technique for
solving PDEs on multiple processors.

* In plasma physics and other fields, these traditional techniques
often reach saturation on modern supercomputers, thus
leaving time parallelization as the only avenue for
improvement (Samaddar et al., 2019).

= Simulations of molecular dynamics often involve averages over
very long trajectories of stochastic dynamics. Space
parallelization is thus useless to reduce the wall clock time
requirements (Gorynina et al., 2022)

Parareal (Lions et al. (2001))

Parareal - Sketch of behavior - 1D System

True solution for 1D ODE system.
The initial condition is given (black dot).
4 up=0.1
34
Ei
8
271
a
14
04 [
6 2 4 é 8 10

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

o
0

Us

Divide the timespan into N =10 int
The true intervals are shown.

ervals.

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 0 Interval: 1 Sequential, running ¥
UK Initial condition at Initialization: building approximate
iteration k for interval i. initial conditions for each
4 interval using .
34
Ei
c
S
221
a
14
o{ g
2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 0 Interval: 2 Sequential, running ¥
UK Initial condition at Initialization: building approximate
iteration k for interval i. initial conditions for each
4 interval using .
34
Ei
c
S
5
321
a
14
‘Uf
04 W
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 0 Interval: 3 Sequential, running ¥
UK Initial condition at Initialization: building approximate
iteration k for interval i. initial conditions for each
4 interval using .
34
Ei
c
S
5
321
a
14
=Ug
vy
04 W
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 0 Interval: 4 Sequential, running ¥
UK Initial condition at Initialization: building approximate
iteration k for interval i. initial conditions for each
4 interval using .
34
Ei
c
S
5
321
a
u3
14
u2
vy
04 W
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 0 Interval: 5 Sequential, running ¥

UK Initial condition at Initialization: building approximate

iteration k for interval i. initial conditions for each
4 interval using .
34
2 u

u3
14
u2
UO
0 w8 !
0 2 4 g Y

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 0 Interval: 6 Sequential, running ¥

UK Initial condition at Initialization: building approximate

iteration k for interval i. initial conditions for each
4 interval using .
34

us
2 ud
u3
14
u2
UO
0 w8 !
0 2 4 g Y

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 0

Interval:

Sequential, running ¥

UK Initial condition at

iteration k for interval i.

Initialization: building approximate
initial conditions for each

4 interval using .
34
2
14
u2

UO

o 8 !
0 2 4

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 0

Interval:

Sequential, running ¥

UK Initial condition at

iteration k for interval i.

Initialization: building approximate
initial conditions for each

4 interval using .
34
2
14
u2

UO

o 8 !
0 2 4

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 0 Interval: 9 Sequential, running ¥
UK Initial condition at Initialization: building approximate
iteration k for interval i. initial conditions for each
4 interval using .
34
Ei
c
S
221
a
14
u2
UO
0 w8 !
0 2 4 6 g Y

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 0 Interval: 10 Sequential, running ¥
UK Initial condition at Initialization: building approximate
iteration k for interval i. initial conditions for each
4 interval using .
34
Ei
c
S
5
321
a
14
u2
UO
0 w8 !
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1
U,": Initial condition at Approximate initial conditions
iteration k for interval i. U} from @

44

34
— L]
S U% L]
: ud
'g .Ul
S 5 4
g 2

.
%]
.
U3
14
L]
ut Ug
u} .
0 ud * Us
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 1

Parallel, running #

UK Initial condition at
iteration k for interval i.

Running & in parallel from the
approximate initial conditions U}

4
34
H
2 ui
1
U3
14
vl)
Ul
01 U ! Us
0 2 4 8 10

Time t

Parareal - Sketch of behavior - 1D System

yt

Iteration: 1
UK Initial condition at Black line: converged intervals
iteration k for interval i. Red dots: current initial conditions
44
3
g 1
3 5
c
'g U]
% 24 2
a
1
U3
14
vl)
ol .uo‘/.ull U,?Hl=<";(U,‘k—+11)+-(7’(Uik—1)_f(uf—1) .LE\
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 2 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
c
'g U]
—g 24 2
a
U3
1 ;
U3
1 F
of w U UFT = SUD) + FU) = SUK) 7
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 3 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
c
2 2 [
221 B
a
U3
1 ;
U3
1 F
of w U UFT = SUD) + FU) = SUK) 7
0 2 4 6

Time t

8 10

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 1

Interval: 4

Sequential, running ¥

UK Initial condition at
iteration k for interval i.

Updating initial conditions using &

44
34
2]
14
0d " u} Ukt =gUIY) + #(UK) — 29U ,) 3
0
0 4

Time t

6

8 10

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 5 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
c
S
221
a
14
ol UFT = SUD) + FU) = SUK) 7

0 2 4 6 8 10
Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 6 Sequential, running ¥
U,k: Initial condition at Explanation: run (red line) from the upd:
iteration k for interval i. initial condition UZ (green dot) and get an|
44 approximate initial condition for interval 6
(gray dot, £(U2)). Correct this using the
2 between F(U2) (blue dot) and ©(U2)
(red dot) previously computed. This d
34 the bottom green dot, UZ. Now runj
= again from this point. Repeat.
El
c
S
5
321
1%
14
o1 T Uft=gUf?) + F(UfC) - 9(Uf) U3
o

ated

ifference

ives
g

0 2 4 6
Time t

10

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 7 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
c
S
221
a
14
ol UFT = SUD) + FU) = SUK) 7

0 2 4 6 8 10
Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 8 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
c
S
221
a
14
ol UFT = SUD) + FU) = SUK) 7

0 2 4 6 8 10
Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 9 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
c
S
221
a
14
ol u ut UK+ = S(UKHL) + F(UE ;) — (UK ;) %
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1 Interval: 10 Sequential, running ¥
Ui"; Initial condition at Updating initial conditions using &
iteration k for interval i.
44
34
Ei
s
221
a
14
0 Uf =g + #(UK) - 9Uf) v
1

0 2 4 6 8 10
Time t

Parareal - Sketch of behavior - 1D System

Iteration: 1
UK Initial condition at End of iteration 1.
iteration k for interval i. Black line: converged intervals
44 Red dots: previous initial conditions
Green dots: updated initial conditiong
34
Ei
c
2
271
a
14
o URY = (U + FUK)~ SUK) v
1

0 2 4 6 8 10
Time t

Parareal - Sketch of behavior - 1D System

Iteration: 2
Uk: Initial condition at Updated initial conditions U?
iteration k for interval i.
44 Uz
.
2
.U} Ug
34
El
s °
g vz N
321
a
14 ,Uzz .U§
- .
u? 5
01 1
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 2

Parallel, running #

UK Initial condition at
iteration k for interval i.

Running & in parallel from the
updated initial conditions U?

]
Uz
3]
24 u3
&
14 02
%
o1 W
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 2

UK Initial condition at
iteration k for interval i.

Black line: converged intervals
Red dots: current initial conditions

U?

2]
U3
3
24 u3
14 U3
Uz K K (UK K
01 T Ut =gl + (U) - 50K)
0 2 4 6

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 2
UK Initial condition at End of iteration 2.
iteration k for interval i. Black line: converged intervals
44 Red dots: previous initial conditions
Green dots: updated initial conditiong
34
Ei
c
2
271
a
14
Uf = g(UKH) + # (UK) — 9k
o] u FE = SR + F (UK - SUE) 0
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 3
UK Initial condition at Updated initial conditions U}
iteration k for interval i. 'U§
41
.UE IUG3
34
&l
c o .
-§ u3 w3
321
(%2}
°
14 U3 U3
S L]
(4 U3
01 13
0 2 4 6 8

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 3
UK Initial condition at Black line: converged intervals
iteration k for interval i. Red dots: current initial conditions U7
41
34
&
c
S
221
@
14
ui K+1 = e(Uk+1) + gk K
o W Uit =9(Ui) + #(U) = 9(UZ)
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 4
UK Initial condition at Black line: converged intervals
iteration k for interval i. Red dots: current initial conditions {/}*
44
34
&
c
2
271
a
14
ut K+1 = e(Uk+1) + gk K
04 v Ut t=gUf) + F(UF) — 9(UF)
0 2 4 é é 1‘0

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 5
UK Initial condition at Black line: converged intervals
iteration k for interval i. Red dots: current initial conditions {J?
41
34
=
c
8
271
@
14
[K+1 = e(Uk+1) + gk K
ol % Ul =g(Ufh) + #(UF_) — g(UK)
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 6
UK Initial condition at Black line: converged intervals
iteration k for interval i. Red dots: current initial conditions U
41
34
&
c
S
221
@
14
Ut K+1 = e(Uk+1) + gk K
o Uit =9(Ui) + #(U) = 9(UZ)
0 2 4 6 8 10

Time t

Parareal - Sketch of behavior - 1D System

Iteration: 7
UK Initial condition at Black line: converged intervals
iteration k for interval i. Red dots: current initial conditions {J/
44
34
&
c
2
271
a
14
ui K+1 = e(Uk+1) + gk K
04 7 Ut t=gUf) + F(UF) — 9(UF)
0 2 4 é é 1‘0

Time t

Parareal - Sketch of behavior - 1D System

Solution u(t)

Iteration: 7

UK Initial condition at
iteration k for interval i.

Uft=gUf?) + F(UfC) - 9(Uf)

End of iteration 7.

Black line: converged intervals

Red dots: previous initial conditions
Green dots: updated initial conditiong

4 6
Time t

Parareal - Sketch of behavior - 1D System

Iteration: 7
Ui"; Initial condition at All initial conditions U; have stabilized.
iteration k for interval i. Parareal has converged.
44
34
Ei
c
S
221
a
14
04

Time t

GParareal (Pentland et al. (2023))

GParareal (Pentland et al. (2023))

Pentland et al. (2023) change the update criterion of the initial
conditions, resulting in a new technique called GParareal.

Parareal uses information calculated during the previous iteration k,
Ukl = g (U,."jll>+ﬂ (U,-k_l) g (U,"_1> L i=1,...,N, (?7)
GParareal uses information from the current iteration k + 1,
Ukt = 7 (U) = (7 -9 +9) (U)
— (7 -9) (Ut) +9 (U).

This would require a serial computation of .# (Ui’il). Instead, a
Gaussian process is used to infer the first term from data.

Parareal - Sketch of behavior - 1D System

Iteration: 1
U¥: Initial condition at End of iteration1.
iteration k for interval i. Black line: converged intervals
44 Red dots: previous initial conditions
Green dots: updated initial conditiong
34
3
c
2
221
2l
14
ol Ukl =gUIY + F(UK) — g(U) o
1

T T T T
0 2 4 6 8 10
Time t

GParareal (Pentland et al. (2023))

System Parareal GParareal
FitzHugh—Nagumo (FHN) 11 5
Rossler 18 13
Hopf 19 10
Brusselator 19 20
Lorenz 15 11
Double Pendulum 15 10

Comparison of performance for common ODE systems in the literature,
described in Slides 43-49.

GParareal - Performance - Hopf bifurcations
To showcase the empirical performance of GParareal, consider a
non-linear model for the study of Hopf bifurcations (Seydel, 2009,
pg. 72; also Slide 45), defined by the following equations
Mt -B), D2 =R), (1)
where we note the dependence on time. In practice, we add time
as an additional coordinate yielding a d = 3 autonomous system.

2 2 duy 2 2

0.6

0.4 Fine
O GParareal

Parareal

0.2

0

uy

-0.2

-0.4

,;3'
® 3 A\
\
OO
-0.6 i = XX X
0.5
0 -
s . 100 150

Image taken from Pentland et al. (2023)

GParareal - Performance - Hopf bifurcations

-=-- Para Theoretical
—— Para Actual
254 - - GPara Upper bound
-=-= GPara Theoretical
—— GPara Actual
=== Fine solver
20
Q
2151
[}
[}
Q
)
10 A
5
0 4

47 94 141 282 517
Cores

GParareal - Improvements

How can we improve? Maintain K < Kgparax While reducing Tgp..

The GP cost comes from the sample size O(Nk) by iteration k.
Can we reduce the sample size without affecting performance?

Yes, we can fit the model using a small subset consisting of the
nearest neighbors to the prediction point. This is sufficient to
smooth locally because very few points are empirically close in
Euclidean distance.

Nearest Neighbor GParareal
(NN-GParareal)

NN-GParareal - Key Points

» Whereas GParareal trains the GP once per iteration k using
the full dataset D, NN-GParareal is re-trained every time a
prediction is made and it uses a subset D’ C D of the dataset
D, with cardinality |D'| = m.

* Empirically, a fixed small value of m € {15, ...,20} is sufficient
for comparable performance to training on the whole D.

= Empirically, choosing the m observations to be the nearest
neighbors (NN) of the prediction point in Euclidean distance
has at least the same performance as other reasonable
approaches.

* This model is known as nearest neighbor Gaussian process
(NNGP) in the literature.

= Re-training at every prediction makes the GP globally
non-stationary, without the need to change the kernel.

NN-GParareal - Performance

System Parareal GParareal NN-GParareal
FitzZHugh—Nagumo 11 5 5
Rossler 18 13 12
Hopf 19 10 9
Brusselator 19 20 17
Lorenz 15 11 9
Double Pendulum 15 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 43-49.

NN-GParareal - Performance - Hopf bifurcations

-=-- Para Theoretical
—— Para Actual
254 - - GPara Upper bound
-=-= GPara Theoretical
—— GPara Actual

NN-GPara Upper bound
204 " NN-GPara Theoretical
—— NN-GPara Actual
Fine solver

Speed-up

101

47 94 141 282 517
Cores

NN-GParareal - Performance - FitzHugh-Nagumo PDE

We explore the performance of Parareal and its variants on a
high-dimensional system. We use the two-dimensional, non-linear
FitzHugh-Nagumo PDE model (Ambrosio and Francoise, 2009).
See also Slide 53.

It represents a set of cells constituted by a small nucleus of
pacemakers near the origin immersed among an assembly of
excitable cells. The simpler FHN ODE system only considers one
cell and its corresponding spike generation behavior.

We discretize both spatial dimensions using finite difference and d
equally spaced points, yielding an ODE with d = 2d? dimensions.

We consider d = 10,12,14,16, corresponding to
d = 200, 288,392,512, and set N = 512.

NN-GParareal - Performance - FitzHugh-Nagumo PDE

~-~ Para Theoretical
1009 para Actual .
GPara Upper bound C e .
--- GPara Theoretical L T S
804 — GPara Actual S T
- NN-GPara Theoretical approx .~ *
NN-GPara Upper bound -
‘NN-GPara Theoretical e
S 60+ — NN-GPara Actual i
- --- Fine solver L
[-
g .
Y 40
204
04
T T T iy
200 288 392 512
d

Figure: Plot of speed-ups for Parareal and its variants for the FitzHugh-Nagumo PDE
model. The speed-ups are computed according to the formulas above. For
N = 256,512, GParareal failed to converge within the computational time budget.

Wrapping up

What have we learned?

GParareal:

* Pro: Accelerated convergence compared to Parareal.

= Pro: Have convergence result bounding the GParareal
accuracy:

n—(k+1) ‘
u(t) = Ui <A > A 1<k<n<N.
i=0

" Infeasible for moderate numbers of processors N and
ODE dimension d, limiting applicability beyond toy examples.

" It requires one model per ODE dimension.

. Hyperparameter optimization via log-likelihood

maximization is very expensive. Usually non-convex.

Wrapping up
Nearest-Neighbors GParareal:

= Pro: Achieves drastic data reduction maintaining or improving
performance.

* Pro: The model is re-trained for every prediction, partially
relaxing the stationarity assumption.

* Pro: Reduced computational complexity from cubic to
loglinear. Verified empirical scalability in N and d.

Pro: The algorithm runtime can be estimated beforehand.
. It requires one NNGP per ODE dimension.

. Convergence results and error bounds not yet available.

Further research question:

= Improve scalability to 10* — 10> ODE dimensions d to solve
complex real-world systems.

= Include uncertainty estimation for the algorithm'’s solution
(probabilistic numerics).

References |

[§ Ambrosio, Benjamin and Jean-Pierre Francoise (2009).
“Propagation of bursting oscillations”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 367.1908, pp. 4863-4875.

[§ Danby, J.M. Anthony (1997). Computer modeling: from sports
to spaceflight... from order to chaos.

[§ Deneubourg, Jean-Louis and Simon Goss (1989). “Collective
patterns and decision-making”. In: Ethology Ecology &
Evolution 1.4, pp. 295-311.

[§ Fornberg, Bengt (1988). “Generation of finite difference
formulas on arbitrarily spaced grids”. In: Mathematics of
computation 51.184, pp. 699-706.

[Gilpin, William (2021). “Chaos as an interpretable benchmark
for forecasting and data-driven modelling”. In: arXiv preprint
arXiv:2110.05266.

References |l

[§ Gorynina, Olga et al. (2022). “Combining machine-learned and
empirical force fields with the parareal algorithm: application to
the diffusion of atomistic defects”. In: arXiv preprint
arXiv:2212.10508.

[§ Kauffman, Stuart A. (1993). The origins of order:
Self-organization and selection in evolution. Oxford University
Press, USA.

[Lefever, René and Grégoire Nicolis (1971). “Chemical
instabilities and sustained oscillations”. In: Journal of
theoretical Biology 30.2, pp. 267—284.

[@ Lions, Jacques-Louis, Yvon Maday, and Gabriel Turinici
(2001). “Résolution d'EDP par un schéma en temps pararéel”.
In: Comptes Rendus de I'Académie des Sciences-Series
I-Mathematics 332.7, pp. 661-668.

[Lorenz, Edward N. (1963). “Deterministic nonperiodic flow" .
In: Journal of atmospheric sciences 20.2, pp. 130-141.

References 1l

E

E

Nagumo, Jinichi, Suguru Arimoto, and Shuji Yoshizawa (1962).
“An active pulse transmission line simulating nerve axon”. In:
Proceedings of the IRE 50.10, pp. 2061-2070.

Pentland, Kamran et al. (2023). “GParareal: a time-parallel
ODE solver using Gaussian process emulation”. In: Statistics
and Computing 33.1, p. 23.

Rasmussen, Steen et al. (1990). “The coreworld: Emergence
and evolution of cooperative structures in a computational
chemistry”. In: Physica D: Nonlinear Phenomena 42.1-3,

pp. 111-134.

Rossler, Otto E. (1976). "An equation for continuous chaos”.
In: Physics Letters A 57.5, pp. 397-398.

Samaddar, Debasmita et al. (2019). “Application of the
parareal algorithm to simulations of ELMs in ITER plasma”. In:
Computer Physics Communications 235, pp. 246-257.

Seydel, Riidiger (2009). Practical bifurcation and stability
analysis. Vol. 5. Springer Science & Business Media.

References IV

[4 Thomas, René (1999). “Deterministic chaos seen in terms of
feedback circuits: Analysis, synthesis,” labyrinth chaos"”. In:
International Journal of Bifurcation and Chaos 9.10,
pp. 1889-1905.

[4 Vecchia, Aldo V. (1988). “Estimation and model identification
for continuous spatial processes”. In: Journal of the Royal
Statistical Society Series B: Statistical Methodology 50.2,
pp. 297-312.

[4 Yang, Lu et al. (2023). “Learning Dynamical Systems from
Data: A Simple Cross-Validation Perspective, Part V: Sparse
Kernel Flows for 132 Chaotic Dynamical Systems”. In: arXiv
preprint arXiv:2301.10321.

GParareal - Performance - Hopf bifurcation

We run Parareal and its variants using a variable number of
intervals N over t € [—20,500]. In the table:

= K is the number of iterations to convergence.

* .7 and ¥ are the cost per iteration of the fine (accurate,
slow) and coarse (less accurate, fast) respectively.

= 'Model’ is the cost of training and inference for the learner
used.

= "Total' is the overall running time.

= 'Speed-up’ is the empirical speed-up, the ratio of the serial
solver (%) to the parallel algorithm.

All entries are in seconds.

GParareal - Performance - Hopf bifurcation

NN-GParareal: our contribution. It trains the GP on a fixed, small
subset of the data to drastically reduce the cost. More details later.

Non-linear Hopf bifurcation model, N = 32

Model K Ty Te Model Total Speed-up
Fine - - - - 3.51e 04 1
Parareal 19 3.70e-02 1.09e+03 1.96e-03 2.08e+04 1.69
GParareal 10 6.24e-02 1.09e+03 6.40e+00 1.09e+04 3.21

NN-GParareal 9 1.53e-02 1.09e+03 4.7T1le4+00 9.80e403 3.58

Non-linear Hopf bifurcation model, N = 64

Model K T T Model Total Speed-up
Fine = = = = 3.51e404 1
Parareal 30 3.42e-02 5.50e+02 6.37e-03 1.65e+04 2.13
GParareal 114 5.31e-02 5.52e+02 5.55e+01 7.78e+03 4.52

NN-GParareal 11 3.38e-02 5.50e+02 1.05e+01 6.06e+403 5.80

GParareal - Performance - Hopf bifurcation

Non-linear Hopf bifurcation model, N — 128

Model K T Te Model Total Speed-up
Fine = = " " 3.51e4+04 1
Parareal 54 5.29e-02 2.72e4+02 2.36e-02 1.47e+04 2.40
GParareal 16 8.49e-02 2.73e+02 4.31le+02 4.79e+03 7.33

NN-GParareal 13 6.68e-02 2.72e4+02 3.28¢+01 3.56e+03 9.86

Non-linear Hopf bifurcation model, N = 256

Model K Ty Te Model Total Speed-up
Fine = = " = 3.51e4+04 1
Parareal 97 8.88e-02 1.96e+02 7.63e-02 1.90e+04 1.85
GParareal 18 1.36e-01 1.37e+02 3.24e4+03 5.72e+03 6.15

NN-GParareal 16 1.19e-01 1.36e+02 1.08e+02 2.28e+03 15.42

Non-linear Hopf bifurcation model, N = 512

Model K Ty Tg Model Total Speed-up
Fine - - - - 3.51e+04 1
Parareal 149 1.55e-01 6.80e+01 1.97e-01 1.02e++04 3.46
GParareal 19 241e-01 6.95¢+01 1.88¢+04 2.01e+04 1.75

NN-GParareal 19 2.50e-01 7.06e4+01 2.68¢+02 1.62e+03 21.75

NN-GParareal - Intuition

Each plot is the prediction error incurred by the model across
intervals i and iterations k. The blue line is that of Parareal, while
the gray one is of 1-nearest neighbor, a learning model that
predicts using exclusively the value of the closest observation.

Prediction Error

Interval i

Rossler - k=1 Rossler - k=2 Rossler - k=3
| Arowsmmosamne e 9 WW o1
— Parareal s m
777777777777777 —— 1-NN Parareal - b 51 ~—— 1-NN Parareal
—— Parareal
[— 1-NN Parareal
T T T T -10 T T T T -10 T T T T
10 20 30 40 10 20 30 40 10 20 30 40
Rossler - k=4 Rossler - k=5 Rossler - k=6
0 0
m 5 — Parareal —— Parareal
,,,,,,,,,,,,,,, —— 1-NNParareal | >/ —— 1NNParareal | ~>1.,/ ... —— 1.NNParareal |
T T T T -10 T T T T -10 T T T T
10 20 30 40 10 20 30 40 10 20 30 40
Rossler - k=7 Rossler - k=8 Rossler - k=9
0 0
—— Parareal 5 —— Parareal 5] m
—————————————— ~—— 1-NN Parareal - f====#f======--—— 1-NN Parareal - fp====-5=#"---- —— 1-NN Parareal -
7/ 7
T T T T -10 T T T T -10 T T T T T T
10 20 30 40 10 20 30 40 15 20 25 30 35 40

NN-GParareal - Intuition

Lorenz, k=1,i"=2

'

o i 10 20 30 40
o ° o ° o T
R O ° ° o

Lorenz k=1,i"=6

Lorenz k=1,i"=11

Lorenz, k=5,i'=15

20

Lorenz, k=5,i'= 28

20

O
Lorenz, k=5,i'=37
20

NN-GParareal - Choosing the data subset - Heuristics

System NN Col +rnd Colonly Row + col Row-major Col-major
FHN 5 8 8 8 10 7
Rossler 12 14 17 17 21 16
Hopf 10 10 10 10 30 10
Brusselator 17 19 Exc Exc Exc 20
Lorenz 10 13 13 13 12 13
Double Pendulum 10 11 15 12 13 13

Table: Simulation results for heuristic choices of data subset for NN-GParareal. ‘Exc’

failed to converge.

= NN. The nearest neighbors. Taken as reference.

* Col + rnd. Take the complete history (a column) (x;,/)/_; up to m, and

distribute any remaining neighbors m — k randomly.

= Col only. Take the complete history. Note that this sets m = k.

* Row + col. Expand radially by striking a trade-off between previous

iterations (column entries) and nearby intervals (row entries).

* Row-major. Give priority to nearby intervals, thus expanding horizontally

across columns first.

» Column-major. Give priority to previous iterations, thus expanding

vertically across rows first.

NN-GParareal - Choosing the data subset - Learning

We enrich the observation x; ; by including information about the
current interval / and iteration k, obtaining zx; = (xx, i, k). We
employ the following compositional kernel:

K (z1,22) = K ((x1, i1, k1), (x2, i, k2))
= 107V K1 (z1,22) K2 (21, 22) K3 (21, 22)

with

Ki (21,22) = exp{—0.5 - 1077 []x1 — x|[3},

K2 (21,22) = exp{—0.5 . 10_0"HI‘1 — IzH%},

K3 (21,22) = exp{—0.5 - 10~%¥||k1 — k2|[3},
where o, captures the standard deviation of the process, and
0s,0j, 0k control the relative importance of the spatial,

temporal-across-intervals and temporal-across-iterations
dimensions.

NN-GParareal - Choosing the data subset - Learning

As proposed by Vecchia (1988), we can rank observations based on
the kernel score with respect to the prediction point z*, k(-,z*).
Then, choose the top m. Since the optimal os depend on m, we
follow the iterative procedure:

1. Propose a random subset of size m, D’

2. Compute the optimal os given D’

3. Rank the observations using k(-,-) based on the optimal s
4. Propose a new subset from the top m observations

5. Repeat steps 2-4 until the subsets stabilize

This procedure is computationally expensive due to its iterative
nature.

NN-GParareal - Choosing the data subset - Learning

Proportion
°
=

0 2 4 6 8 10
Number of nearest neighbors in final subset

Figure: Visualization of the converged subset selection for the NN-GParareal with time
extension algorithm run on Lorenz. Histogram of the distribution of the percentage of
points in each converged subset that match the nearest neighbors, aggregating over.

Choosing m

FHN Rossler Hopf
10
0.5 061
84
0.44
>
g 03
o
0 a4 0.24
2 0.1
0 v v v - 0.0+
46 48 50 52 54 12 9.0 9.5 10.0
K K K
Brussellator Lorenz Double Pendulum
0.5
0.44
203
2
k3
0 0.24
0.14
0.0+

Figure: Histogram of K for several systems obtained using seven values of m, between
10 and 20, and five random seeds. Note how concentrated the empirical distributions
are, guaranteeing consistent performance regardless of the value of m and the specific

execution.

NN-GParareal - More results: Thomas Labyrinth

Finally, we consider Thomas Labyrinth (Gilpin, 2021), a chaotic
system reportedly difficult to learn by a variety of kernel methods
(Yang et al., 2023). For N = 256 and N = 512 GParareal failed to
converge within 48 hours, intermediate results have been placed
instead. This doesn't affect the conclusions.

NN-GParareal - More results: Thomas Labyrinth

~-~ Para Theoretical
74 —— Para Actual
GPara Upper bound
--- GPara Theoretical
6 —— GPara Actual
~~~~~~ NN-GPara Theoretical approx
NN-GPara Upper bound

5 --- NN-GPara Theoretical
% —— NN-GPara Actual
-g --- Fine solver
o 41
Q.
w
31 -
24 /) N\
1 \-—-eeeEaReiaa
T T T T T
a7 94 141 282 517
Cores

Figure: Plot of speed-ups for Parareal and its variants for Thomas labyrinth. The
speed-ups are computed according to the formulas in Section ??. GParareal failed to
converge within the time limit for N = 256,512, hence the missing data.



NN-GParareal - More

N: 32, Tot tain time: 27s
100

N: 256, Tot tain time: 44h

Converged intervals (%)

results: Thomas Labyrinth

Train time for iter k (sec)

81 80
5] 60
41 40
27 20
0 0

5 3.0
& 80
< 2.5
£ 2.0+ 60
8 1.5
o +27 4
g 0
< 1.01
3 20
= 0.5
0
0 10 20
3
2.5
€
<20
g
- 15
&
210
c
505
=
0.0
0 20

40

60

100

80

60

40

20

Converged intervals (%)

10

Train time for iter k (h)

N: 512, Tot tain time: 47h

N: 64, Tot tain time: 39s
100

Converged intervals (%)

Train time for iter k (min)

10

8

6

10

20

20

100

80

60

40

20

Converged intervals (%)

~

40

60

N: 128, Tot tain time: 311m
100

80

60

40

20

Converged intervals (%)

Figure: GParareal’s percentage of converged intervals (red line) and the training time
per iteration (blue line) for Thoams labyrinth. The aggregated model cost across k is

shown in the title. Note that NV = 256,512 failed to converge within the
computational time budget. The model cost per iteration is increasing with k.



NN-GParareal - More results: Thomas Labyrinth

N: 32, Tot tain time: 8s N: 64, Tot tain time: 13s N: 128, Tot tain time: 82s
100 12 100 100
- 25
5 s 3 s 3 3
3 0.8 teo £ 810 80 = & 80 =
- e w20 @
X o X [ fg
506 teo 5 308 60 5 Zis 60 §
& S Sos £ 5 =
o 041 Lao © o 40 % @10 40 ©°
€ 2 E 2 £ e
= g 504 g = 9
£ 071 f20 5 S 2 £ £os o ¢
= (S 0.2 [SH— (o}
0.0 0 o 0.0 0
[ 10 20 0 5 10 15 0 20 40 60
k k k
N: 256, Tot tain time: 12m N: 512, Tot tain time: 7m
100 100

g8 g S =

8 80 & & 80 =

P P

~ g g« 3

2 60 § 210 60 &

Pt £ = c

Sa 5T 8 5

v 40 3 o 40 9

£ 2 E s 2

Z2 : =z 2

s 20 5§ 20 §

= (SR o

0 0 0 0
0 50 100 150 0 20 40 60
k k

Figure: NN-GParareal’s percentage of converged intervals (red line) and the training
time per iteration (blue line) for Thoams labyrinth. The aggregated model cost across
k is shown in the title. The model cost per iteration is decreasing with k.



NN-GParareal - More results: Thomas Labyrinth

N=32 N=64
10 10
08 0s
e
— K Gparereal H
go¢ [ [y cos H Ko
£ - 23sK<25 £ -
g —oszk<2 2
g - 26=K<27 3 - 15sK<16
N = - =16
04 - k=27 0s
02 02
P
n=128
10
o8
— Korarareal
08 e
H = 522K <65
2 =5 =k<6
H = ask<71
04 =g
syl
02 | |

m

Figure: NN-GParareal, empirical distribution of K across values of m for Thomas
labyrinth. 200 independent runs for each m have been carried out. The shaded area
indicates better performance than GParareal.



NN-GParareal - More results: Thomas Labyrinth

N=32 UL
10 e
08 oe
= e

. cue
g §

5 5
£ m—125=Spced-up<13 & =422 Speed-up<ad

4
A
1 11 ﬂ

=128
10
08
— Grarareal speedup
sos = Specd—up<16
H =163 Speed-up<17
H =175 5peed~up<18
H 18 =Speed—up<19
04 = Speed-up=19
02

Figure: NN-GParareal, empirical distribution of the speed-up across values of m for
Thomas labyrinth. 200 independent runs for each m have been carried out. The
shaded area indicates better performance than GParareal.



ODE/PDE Systems



Systems: FitzHugh—Nagumo

The FitzZHugh-Nagumo (FHN) is a model for an animal nerve axon
(Nagumo et al., 1962). It is a reasonably easy system to learn,
does not exhibit chaotic behavior, and is commonly used
throughout the literature. It is described by the following equations

3
ddutl_:C<U1—L;1+U2>, %:—%(ul—a-i—buﬂ,
with (a, b,c) = 0.2,0.2,3. We integrate over t € [0, 40] using

N = 40 intervals, taking ugp = (—1, 1) as the initial condition. We
use Runge-Kutta 2 with 160 steps for the coarse solver ¢, and
Ruge-Kutta 4 with 1.6e® steps for the fine solver .%. This is the
same setting as Pentland et al. (2023), which allows almost direct
comparison, although our system is the normalized version of the
above, which also applies to up. We use a (normalized) error
e=5be".



Systems: Rossler

The Rossler is a model for turbulence (Rossler, 1976)

dug dup

E:_LQ_U?” E 3:B—|—U3(U1—6).

B R du
= Uy + aup, T
When (3, b, &) = (0.2,0.2,5.7), it exhibits chaotic behavior. This
configuration is commonly used throughout the literature. We
integrate over t € [0,340] using N = 40 intervals, taking

up = (0,—6.78,0.02) as initial condition. We use Runge-Kutta 1
with 9e* steps for the coarse solver 4, and Ruge-Kutta 4 with
4.5€8 steps for the fine solver .. This is the same setting as
Pentland et al. (2023), although, like above, we use the normalized

version and set a normalized € = 5.



Systems: Non-linear Hopf bifurcation

This is a non-linear model for the study of Hopf bifurcations, see
Seydel (2009, pg. 72) for a detailed explanation. The model is
defined by the following equations

duy
dt

t du t
= —U2+U1(7—Uf—ug), 7: = U1+U2(7—Uf—tl§)v (2)

where we note the dependence on time. To counter that, we add
time as an additional coordinate, thus yielding a d = 3 system. We
integrate over t € [—20,500] using N = 32 intervals, taking

up = (0.1,0.1,500) as initial condition. We use Runge-Kutta 1
with 2048 steps for the coarse solver ¢, and Ruge-Kutta 8 with
5.12€® steps for the fine solver .%. This is the same setting as
Pentland et al. (2023), although, like above, we use the normalized
version and set a normalized ¢ = 5e~7.



Systems: Brusselator

The Brusselator models an autocatalytic chemical reaction
(Lefever and Nicolis, 1971). It is a stiff, non-linear ODE, and the
following equations govern it

d

% = A+ U%Uz — (B+ ].)U17
dus

I = BU]_ — U]2_U2,

where (A, B) = (1,3). We integrate over t € [0,100] using N = 32
intervals, taking up = (1,3.7) as initial condition. We use
Runge-Kutta 4 with 2.5e? steps for the coarse solver ¢, and
Ruge-Kutta 4 with 2.5e* steps for the fine solver .%. We use the
normalized version and set a normalized ¢ = 5e~".



Systems: Double pendulum

This is a model for a double pendulum, adapted from Danby
(1997). It consists of a simple pendulum of mass m and rod length
£ connected to another simple pendulum of equal mass m and rod
length ¢, acting under gravity g. The model is defined by the
following equations

dU1
dt
dU2
dt
dus  —u3fy (ur, up) — ugsin (up — wp) — 2sin (uy) + cos (uy — u2) sin (u2)
dt o (u1, up) ’
dug  2u3sin(uy — wp) + uZfy (u1, up) + 2 cos (uy — up) sin (u1) — 2sin (u2)
ﬁ o f2(U1,U2) ’

= us,

= Ua,

where .
fi (1, wp) = sin(uy — wp) cos (ug — w),

f2 (Ul, U2) =2 — COS2 (U1 — U2) .



Systems: Double pendulum

In the above, m, ¢, and g have been scaled out of the system by
letting £ = g. The variables u; and up measure the angles between
each pendulum and the vertical axis, while u3 and us measure the
corresponding angular velocities.

The system exhibits chaotic behavior and is commonly used in the
literature. Based on the initial condition, it can be difficult to learn.

We integrate over t € [0,80] using N = 32 intervals, taking

up = (—0.5,0,0,0) as initial condition. We use Runge-Kutta 1
with 3104 steps for the coarse solver ¢, and Ruge-Kutta 8 with
2.17€" steps for the fine solver .#. This is a similar setting as
Pentland et al. (2023, Figure 4.10), although, like above, we use
the normalized version and set a normalized € = 5e~".



Systems: Lorenz

The Lorenz system is a simplified model for weather prediction
Lorenz, 1963. With the following parameters, it is a chaotic system
governed by the equations

duy ( )

— = u, —uy),

dr Y1 (U2 1

duo

—— = YoU1 — ULU3 — Up,
dr Y2u1 1U3 2
dus

—— = Uilp — y3U3,

dt 1U2 — Y3U3

with (71,72,73) = (10,28,8/3). We integrate over t € [0, 18]
using N = 50 intervals, taking vy = (—15, —15,20) as initial
condition. We use Runge-Kutta 4 with 3e? steps for the coarse
solver ¢, and Ruge-Kutta 4 with 2.25e* steps for the fine solver
% . We use the normalized version and set a normalized ¢ = 5e~".



Systems: Thomas labyrinth
Thomas (1999) has proposed a particularly simple
three-dimensional system representative of a large class of
auto-catalytic models that occur frequently in chemical reactions
(Rasmussen et al., 1990), ecology (Deneubourg and Goss, 1989),
and evolution (Kauffman, 1993). It is described by the following

equations
% = bsiny — ax,
d .
% = bsinz — ay, (3)
dz

% = bsinx —az,

where (a, b) = (0.5,10). We integrate over t € [0, 10] for
N = 32,64, t € [0,40] for N =128, and t € [0,100] for
N = 256,512 intervals. Following Gilpin (2021), we take

up = (4.6722764,5.2437205¢ 0, —6.4444208e1°)

as initial condition, for which the system exhibits chaotic dynamics.
Further, we use Runge-Kutta 1 with 10/ steps for the coarse
solver & and Ruge-Kutta 4 with 1e steps for the fine solver.Z.



Systems: Viscous Burgers' equation

The viscous Burgers' equation is a fundamental PDE describing
convection-diffusion occurring in various areas of applied
mathematics. It is one-dimensional and defined as

Ve = UV — Wy (x,t) € (=L, L) x (to, tn], (4)

with initial condition v(x, to) = w(x),x € [—L, L], and boundary
conditions

v(—L,t) =v(L,t), w(—Lt)=v(Lt), tE€]lt, Tn]

In the above, v is the diffusion coefficient. We discretize the spatial
domain using finite difference (Fornberg, 1988) and d + 1 equally
spaced points xj11 = Xj + Ax, where Ax =2L/d and j =0,...,d.



Systems: Viscous Burgers' equation

In the numerical experiments, we consider two values for the time
horizon, ty =5 and ty = 5.9, with tp = 0. Weset N =d =128
and take L =1 and v = 1/100. The discretization and finite
difference formulation imply that it is equivalent to solving a
d-dimensional system of ODEs.

We take vo(x) = 0.5(cos(3mx) + 1) as the initial condition. We
use Runge-Kutta 1 with 4N steps for the coarse solver ¢ and
Ruge-Kutta 8 with 5.12e° steps for the fine solver ..

We use the normalized version with a normalized € = 5e".



Systems: FitzHugh-Nagumo PDE

The two-dimensional, non-linear FitzHugh-Nagumo PDE model
(Ambrosio and Frangoise, 2009) is an extension of the ODE system
in Slide 43. It represents a set of cells constituted by a small
nucleus of pacemakers near the origin immersed among an
assembly of excitable cells. The simpler FHN ODE system only
considers one cell and its corresponding spike generation behavior.

It is defined as

vi=aViv4+v—vi—w—c, (xt)€(—L L)?x (to,tn]

we =7 (bV2w + v — w),

(5)
with initial conditions

v(x, to) = vo(x), w(x, to) = wo(x), x € [-L, L],



Systems: FitzHugh-Nagumo PDE

and boundary conditions

(6, 1), £) = v{(x 1), )

v((=L,y),t) =v((L,y),t

vy ((x,—L),t) = vy((x, L), t)

vi((=L,y), t) = w((L, ), 1), tE€ [to, tn].

The boundary conditions for w are equivalent and not repeated.
We discretize both spatial dimensions using finite difference and d
equally spaced points, yielding an ODE with d = 2d? dimensions.



Systems: FitzHugh-Nagumo PDE

Ip the numerical experiments, we consider four values for
d =10,12,14,16, corresponding to d = 200, 288,392,512. We set
N =512, L =1, ty = 0, and take vp(x), w(0) randomly sampled

from [0,1]9 as the initial condition.

We use Ruge-Kutta 8 with 102 steps for the fine solver .%. We use
the normalized version with a normalized ¢ = 5e~7.

The time span and coarse solvers depend on d, Table 2 describes
their relation. This is to provide a realistic experiment where the
user would need to adjust the coarse solver based on ty — tp.



Systems: FitzHugh-Nagumo PDE

d 9 9 steps ty
200 RK2 3N ty = 150
288 RK2 12N ty = 550
392 RK2 25N ty = 950
512 RK4 25N ty = 1100

Table: Simulation setup for the two-dimensional FitzHugh-Nagumo PDE. Adjusting
the coarse solver based on the time horizon ty makes the simulation more realistic.



	References

