Nearest Neighbor GParareal: Improving Scalability of Gaussian Processes for Parallel-in-Time Solvers Guglielmo Gattiglio University of Warwick February 20, 2024 Joint work with: Lyudmila Grigoryeva, University of St. Gallen Massimiliano Tamborrino, University of Warwick #### Parareal (Lions et al., 2001). - Theory - Sketch of the procedure - Computational cost #### GParareal (Pentland et al., 2023). - Intuition - Empirical results - Computational cost #### Nearest Neighbor GParareal New! - Intuition - Empirical results - Computational cost ## Solving Lorenz \mathscr{G} , coarse Parareal, midway Parareal, final \mathcal{F} , fine #### Introduction In this talk, we consider machine-learning-based approaches to speed up Parareal (Lions et al., 2001), a parallel-in-time solver for ODEs and PDEs. Why is time parallelization important? - Space parallelization has been a widely use technique for solving PDEs on multiple processors. - In plasma physics and other fields, these traditional techniques often reach saturation on modern supercomputers, thus leaving time parallelization as the only avenue for improvement (Samaddar et al., 2019). - Simulations of molecular dynamics often involve averages over very long trajectories of stochastic dynamics. Space parallelization is thus useless to reduce the wall clock time requirements (Gorynina et al., 2022) # Parareal (Lions et al. (2001)) # GParareal (Pentland et al. (2023)) # GParareal (Pentland et al. (2023)) Pentland et al. (2023) change the update criterion of the initial conditions, resulting in a new technique called GParareal. Parareal uses information calculated during the previous iteration k, $$U_i^{k+1} = \mathscr{G}\left(U_{i-1}^{k+1}\right) + \mathscr{F}\left(U_{i-1}^k\right) - \mathscr{G}\left(U_{i-1}^k\right), \quad i = 1, \dots, N, \tag{??}$$ GParareal uses information from the current iteration k + 1, $$\begin{aligned} U_i^{k+1} &= \mathscr{F}\left(U_{i-1}^{k+1}\right) = \left(\mathscr{F} - \mathscr{G} + \mathscr{G}\right) \left(U_{i-1}^{k+1}\right) \\ &= \left(\mathscr{F} - \mathscr{G}\right) \left(U_{i-1}^{k+1}\right) + \mathscr{G}\left(U_{i-1}^{k+1}\right). \end{aligned}$$ This would require a serial computation of $\mathscr{F}\left(U_{i-1}^{k+1}\right)$. Instead, a Gaussian process is used to infer the first term from data. # GParareal (Pentland et al. (2023)) | System | Parareal | GParareal | |-----------------------|----------|-----------| | FitzHugh–Nagumo (FHN) | 11 | 5 | | Rossler | 18 | 13 | | Hopf | 19 | 10 | | Brusselator | 19 | 20 | | Lorenz | 15 | 11 | | Double Pendulum | 15 | 10 | Comparison of performance for common ODE systems in the literature, described in Slides 43-49. ## GParareal - Performance - Hopf bifurcations To showcase the empirical performance of GParareal, consider a non-linear model for the study of Hopf bifurcations (Seydel, 2009, pg. 72; also Slide 45), defined by the following equations $$\frac{du_1}{dt} = -u_2 + u_1(\frac{t}{T} - u_1^2 - u_2^2), \quad \frac{du_2}{dt} = u_1 + u_2(\frac{t}{T} - u_1^2 - u_2^2), \quad (1)$$ where we note the dependence on time. In practice, we add time as an additional coordinate yielding a d=3 autonomous system. # GParareal - Performance - Hopf bifurcations #### GParareal - Improvements How can we improve? Maintain $K \leq K_{GPara*}$ while reducing T_{GP*} . The GP cost comes from the sample size O(Nk) by iteration k. Can we reduce the sample size without affecting performance? Yes, we can fit the model using a small subset consisting of the *nearest neighbors* to the prediction point. This is sufficient to smooth locally because very few points are empirically close in Euclidean distance. # Nearest Neighbor GParareal (NN-GParareal) #### NN-GParareal - Key Points - Whereas GParareal trains the GP once per iteration k using the full dataset D, NN-GParareal is re-trained every time a prediction is made and it uses a subset $D' \subset D$ of the dataset D, with cardinality |D'| = m. - Empirically, a fixed small value of $m \in \{15, ..., 20\}$ is sufficient for comparable performance to training on the whole D. - Empirically, choosing the m observations to be the nearest neighbors (NN) of the prediction point in Euclidean distance has at least the same performance as other reasonable approaches. - This model is known as nearest neighbor Gaussian process (NNGP) in the literature. - Re-training at every prediction makes the GP globally non-stationary, without the need to change the kernel. #### NN-GParareal - Performance | System | Parareal | GParareal | NN-GParareal | |-----------------|----------|-----------|--------------| | FitzHugh–Nagumo | 11 | 5 | 5 | | Rossler | 18 | 13 | 12 | | Hopf | 19 | 10 | 9 | | Brusselator | 19 | 20 | 17 | | Lorenz | 15 | 11 | 9 | | Double Pendulum | 15 | 10 | 10 | Comparison of performance for common ODE systems in the literature, described in Slides 43-49. #### NN-GParareal - Performance - Hopf bifurcations #### NN-GParareal - Performance - FitzHugh-Nagumo PDE We explore the performance of Parareal and its variants on a high-dimensional system. We use the two-dimensional, non-linear FitzHugh-Nagumo PDE model (Ambrosio and Françoise, 2009). See also Slide 53. It represents a set of cells constituted by a small nucleus of pacemakers near the origin immersed among an assembly of excitable cells. The simpler FHN ODE system only considers one cell and its corresponding spike generation behavior. We discretize both spatial dimensions using finite difference and \tilde{d} equally spaced points, yielding an ODE with $d=2\tilde{d}^2$ dimensions. We consider $\tilde{d} = 10, 12, 14, 16$, corresponding to d = 200, 288, 392, 512, and set N = 512. #### NN-GParareal - Performance - FitzHugh-Nagumo PDE Figure: Plot of speed-ups for Parareal and its variants for the FitzHugh-Nagumo PDE model. The speed-ups are computed according to the formulas above. For N=256,512, GParareal failed to converge within the computational time budget. # Wrapping up What have we learned? #### GParareal: - Pro: Accelerated convergence compared to Parareal. - Pro: Have convergence result bounding the GParareal accuracy: $$|u(t_j)-U_n^k| \leq \Lambda_k \sum_{i=0}^{n-(k+1)} A^i \qquad 1 \leq k < n \leq N.$$ - Con: Infeasible for moderate numbers of processors N and ODE dimension d, limiting applicability beyond toy examples. - Con: It requires one model per ODE dimension. - Con: Hyperparameter optimization via log-likelihood maximization is very expensive. Usually non-convex. #### Wrapping up #### Nearest-Neighbors GParareal: - Pro: Achieves drastic data reduction maintaining or improving performance. - Pro: The model is re-trained for every prediction, partially relaxing the stationarity assumption. - Pro: Reduced computational complexity from cubic to loglinear. Verified empirical scalability in N and d. - Pro: The algorithm runtime can be estimated beforehand. - Con: It requires one NNGP per ODE dimension. - Con: Convergence results and error bounds not yet available. #### Further research question: - Improve scalability to $10^4 10^5$ ODE dimensions d to solve complex real-world systems. - Include uncertainty estimation for the algorithm's solution (probabilistic numerics). #### References I - Ambrosio, Benjamin and Jean-Pierre Françoise (2009). "Propagation of bursting oscillations". In: *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 367.1908, pp. 4863–4875. - Danby, J.M. Anthony (1997). Computer modeling: from sports to spaceflight... from order to chaos. - Deneubourg, Jean-Louis and Simon Goss (1989). "Collective patterns and decision-making". In: *Ethology Ecology & Evolution* 1.4, pp. 295–311. - Fornberg, Bengt (1988). "Generation of finite difference formulas on arbitrarily spaced grids". In: *Mathematics of computation* 51.184, pp. 699–706. - Gilpin, William (2021). "Chaos as an interpretable benchmark for forecasting and data-driven modelling". In: arXiv preprint arXiv:2110.05266. #### References II - Gorynina, Olga et al. (2022). "Combining machine-learned and empirical force fields with the parareal algorithm: application to the diffusion of atomistic defects". In: arXiv preprint arXiv:2212.10508. - Kauffman, Stuart A. (1993). The origins of order: Self-organization and selection in evolution. Oxford University Press, USA. - Lefever, René and Grégoire Nicolis (1971). "Chemical instabilities and sustained oscillations". In: *Journal of theoretical Biology* 30.2, pp. 267–284. - Lions, Jacques-Louis, Yvon Maday, and Gabriel Turinici (2001). "Résolution d'EDP par un schéma en temps pararéel". In: Comptes Rendus de l'Académie des Sciences-Series I-Mathematics 332.7, pp. 661–668. - Lorenz, Edward N. (1963). "Deterministic nonperiodic flow". In: *Journal of atmospheric sciences* 20.2, pp. 130–141. #### References III - Nagumo, Jinichi, Suguru Arimoto, and Shuji Yoshizawa (1962). "An active pulse transmission line simulating nerve axon". In: *Proceedings of the IRE* 50.10, pp. 2061–2070. - Pentland, Kamran et al. (2023). "GParareal: a time-parallel ODE solver using Gaussian process emulation". In: Statistics and Computing 33.1, p. 23. - Rasmussen, Steen et al. (1990). "The coreworld: Emergence and evolution of cooperative structures in a computational chemistry". In: *Physica D: Nonlinear Phenomena* 42.1-3, pp. 111–134. - Rössler, Otto E. (1976). "An equation for continuous chaos". In: *Physics Letters A* 57.5, pp. 397–398. - Samaddar, Debasmita et al. (2019). "Application of the parareal algorithm to simulations of ELMs in ITER plasma". In: Computer Physics Communications 235, pp. 246–257. - Seydel, Rüdiger (2009). Practical bifurcation and stability analysis. Vol. 5. Springer Science & Business Media. #### References IV - Thomas, René (1999). "Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis," labyrinth chaos"". In: *International Journal of Bifurcation and Chaos* 9.10, pp. 1889–1905. - Vecchia, Aldo V. (1988). "Estimation and model identification for continuous spatial processes". In: *Journal of the Royal Statistical Society Series B: Statistical Methodology* 50.2, pp. 297–312. - Yang, Lu et al. (2023). "Learning Dynamical Systems from Data: A Simple Cross-Validation Perspective, Part V: Sparse Kernel Flows for 132 Chaotic Dynamical Systems". In: arXiv preprint arXiv:2301.10321. #### GParareal - Performance - Hopf bifurcation We run Parareal and its variants using a variable number of intervals N over $t \in [-20, 500]$. In the table: - *K* is the number of iterations to convergence. - F and G are the cost per iteration of the fine (accurate, slow) and coarse (less accurate, fast) respectively. - 'Model' is the cost of training and inference for the learner used. - 'Total' is the overall running time. - 'Speed-up' is the empirical speed-up, the ratio of the serial solver (F) to the parallel algorithm. All entries are in seconds. #### GParareal - Performance - Hopf bifurcation NN-GParareal: our contribution. It trains the GP on a fixed, small subset of the data to drastically reduce the cost. More details later. | Non-linear | Hopf | bifurcation | model, | N = | 32 | |------------|------|-------------|--------|-----|----| |------------|------|-------------|--------|-----|----| | Model | K | $T_{\mathscr{G}}$ | $T_{\mathscr{F}}$ | Model | Total | Speed-up | | | |---------------------------------------------|----|-------------------|-------------------|------------|------------|----------|--|--| | | | | | | | | | | | Fine | - | - | _ | _ | 3.51e+04 | 1 | | | | Parareal | 19 | 3.70e-02 | 1.09e + 03 | 1.96e-03 | 2.08e + 04 | 1.69 | | | | GParareal | 10 | 6.24e-02 | 1.09e + 03 | 6.40e + 00 | 1.09e+04 | 3.21 | | | | NN-GParareal | 9 | 1.53e-02 | 1.09e + 03 | 4.71e + 00 | 9.80e + 03 | 3.58 | | | | N - 1 II - C1 'C 1.1 N - C4 | | | | | | | | | | Non-linear Hopf bifurcation model, $N = 64$ | | | | | | | | | | Model | K | $T_{\mathscr{G}}$ | $T_{\mathscr{F}}$ | Model | Total | Speed-up | | | | | | | | | | 12 | | | | Fine | - | - | - | _ | 3.51e+04 | 1 | | | | Parareal | 30 | 3.42e-02 | 5.50e + 02 | 6.37e-03 | 1.65e + 04 | 2.13 | | | | GParareal | 14 | 5.31e-02 | 5.52e + 02 | 5.55e + 01 | 7.78e + 03 | 4.52 | | | | NN-GParareal | 11 | 3.38e-02 | 5.50e + 02 | 1.05e + 01 | 6.06e + 03 | 5.80 | | | #### GParareal - Performance - Hopf bifurcation Non-linear Hopf bifurcation model, N=128 | Model | K | $T_{\mathscr{G}}$ | $T_{\mathscr{F}}$ | Model | Total | Speed-up | | |--------------------------------------------|-----|-------------------|-------------------|-----------------------------------------|------------|----------|--| | Fine | _ | _ | _ | _ | 3.51e+04 | 1 | | | Parareal | 54 | 5.29e-02 | 2.72e + 02 | 2.36e-02 | 1.47e + 04 | 2.40 | | | GParareal | 16 | 8.49e-02 | 2.73e+02 | 4.31e+02 | 4.79e + 03 | 7.33 | | | NN-GParareal | 13 | 6.68e-02 | 2.72e+02 | 3.28e+01 | 3.56e+03 | 9.86 | | | | Non | -linear Hop | of bifurcation | n model, N | = 256 | | | | Model | K | $T_{\mathscr{G}}$ | $T_{\mathscr{F}}$ | Model | Total | Speed-up | | | Fine | | _ | | | 3.51e+04 | 1 | | | Parareal | 97 | 8.88e-02 | 1.96e + 02 | 7.63e-02 | 1.90e+04 | 1.85 | | | GParareal | 18 | 1.36e-01 | 1.37e + 02 | 3.24e + 03 | 5.72e + 03 | 6.15 | | | NN-GParareal | 16 | 1.19e-01 | 1.36e+02 | 1.08e + 02 | 2.28e+03 | 15.42 | | | Non-linear Hopf bifurcation model, $N=512$ | | | | | | | | | Model | K | $T_{\mathscr{G}}$ | $T_{\mathscr{F}}$ | Model | Total | Speed-up | | | Fine | _ | | | | 3.51e+04 | 1 | | | Parareal | 149 | 1.55e-01 | 6.80e + 01 | 1.97e-01 | 1.02e+04 | 3.46 | | | GParareal | 19 | 2.41e-01 | 6.95e+01 | 1.88e + 04 | 2.01e+04 | 1.75 | | | NN-GParareal | 19 | 2.50e-01 | 7.06e+01 | 2.68e+02 | 1.62e+03 | 21.75 | | | iii, Gi dialeai | 10 | 2.000-01 | 1.000 01 | 100000000000000000000000000000000000000 | 1.020 00 | | | #### NN-GParareal - Intuition Each plot is the prediction error incurred by the model across intervals i and iterations k. The blue line is that of Parareal, while the gray one is of 1-nearest neighbor, a learning model that predicts using exclusively the value of the closest observation. #### NN-GParareal - Intuition ## NN-GParareal - Choosing the data subset - Heuristics | System | NN | Col + rnd | Col only | Row + col | Row-major | Col-major | |-----------------|----|-----------|----------|-----------|-----------|-----------| | | | | | | | | | FHN | 5 | 8 | 8 | 8 | 10 | 7 | | Rossler | 12 | 14 | 17 | 17 | 21 | 16 | | Hopf | 10 | 10 | 10 | 10 | 30 | 10 | | Brusselator | 17 | 19 | Exc | Exc | Exc | 20 | | Lorenz | 10 | 13 | 13 | 13 | 12 | 13 | | Double Pendulum | 10 | 11 | 15 | 12 | 13 | 13 | Table: Simulation results for heuristic choices of data subset for NN-GParareal. 'Exc' failed to converge. - NN. The nearest neighbors. Taken as reference. - Col + rnd. Take the complete history (a column) $(x_{j,i})_{j=1}^k$ up to m, and distribute any remaining neighbors m-k randomly. - Col only. Take the complete history. Note that this sets m = k. - Row + col. Expand radially by striking a trade-off between previous iterations (column entries) and nearby intervals (row entries). - Row-major. Give priority to nearby intervals, thus expanding horizontally across columns first. - Column-major. Give priority to previous iterations, thus expanding vertically across rows first. # NN-GParareal - Choosing the data subset - Learning We enrich the observation $x_{k,i}$ by including information about the current interval i and iteration k, obtaining $\mathbf{z}_{k,i} = (x_{k,i}, i, k)$. We employ the following compositional kernel: $$K(\mathbf{z}_{1}, \mathbf{z}_{2}) = K((x_{1}, i_{1}, k_{1}), (x_{2}, i_{2}, k_{2}))$$ = $10^{\sigma_{v}} K_{1}(\mathbf{z}_{1}, \mathbf{z}_{2}) K_{2}(\mathbf{z}_{1}, \mathbf{z}_{2}) K_{3}(\mathbf{z}_{1}, \mathbf{z}_{2}),$ with $$\begin{split} & \mathcal{K}_{1}\left(\mathbf{z}_{1},\mathbf{z}_{2}\right) = \exp\{-0.5\cdot10^{-\sigma_{s}}||x_{1}-x_{2}||_{2}^{2}\}, \\ & \mathcal{K}_{2}\left(\mathbf{z}_{1},\mathbf{z}_{2}\right) = \exp\{-0.5\cdot10^{-\sigma_{i}}||i_{1}-i_{2}||_{2}^{2}\}, \\ & \mathcal{K}_{3}\left(\mathbf{z}_{1},\mathbf{z}_{2}\right) = \exp\{-0.5\cdot10^{-\sigma_{k}}||k_{1}-k_{2}||_{2}^{2}\}, \end{split}$$ where σ_v captures the standard deviation of the process, and $\sigma_s, \sigma_i, \sigma_k$ control the relative importance of the spatial, temporal-across-intervals and temporal-across-iterations dimensions. # NN-GParareal - Choosing the data subset - Learning As proposed by Vecchia (1988), we can rank observations based on the kernel score with respect to the prediction point \mathbf{z}^* , $k(\cdot, \mathbf{z}^*)$. Then, choose the top m. Since the optimal σ s depend on m, we follow the iterative procedure: - 1. Propose a random subset of size m, D' - 2. Compute the optimal σ s given D' - 3. Rank the observations using $k(\cdot, \cdot)$ based on the optimal θ s - 4. Propose a new subset from the top m observations - 5. Repeat steps 2-4 until the subsets stabilize This procedure is computationally expensive due to its iterative nature. # NN-GParareal - Choosing the data subset - Learning Figure: Visualization of the converged subset selection for the NN-GParareal with time extension algorithm run on Lorenz. Histogram of the distribution of the percentage of points in each converged subset that match the nearest neighbors, aggregating over. #### Choosing m Figure: Histogram of K for several systems obtained using seven values of m, between 10 and 20, and five random seeds. Note how concentrated the empirical distributions are, guaranteeing consistent performance regardless of the value of m and the specific execution. #### NN-GParareal - More results: Thomas Labyrinth Finally, we consider Thomas Labyrinth (Gilpin, 2021), a chaotic system reportedly difficult to learn by a variety of kernel methods (Yang et al., 2023). For N=256 and N=512 GParareal failed to converge within 48 hours, intermediate results have been placed instead. This doesn't affect the conclusions. Figure: Plot of speed-ups for Parareal and its variants for Thomas labyrinth. The speed-ups are computed according to the formulas in Section $\ref{speed:eq:prop:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:prop:eq:eq:prop:eq:prop:eq:prop:eq:eq:prop:eq:eq:eq:prop:eq:eq:prop:eq:eq:eq$ Figure: GParareal's percentage of converged intervals (red line) and the training time per iteration (blue line) for Thoams labyrinth. The aggregated model cost across k is shown in the title. Note that N=256,512 failed to converge within the computational time budget. The model cost per iteration is increasing with k. Figure: NN-GParareal's percentage of converged intervals (red line) and the training time per iteration (blue line) for Thoams labyrinth. The aggregated model cost across k is shown in the title. The model cost per iteration is decreasing with k. Figure: NN-GParareal, empirical distribution of K across values of m for Thomas labyrinth. 200 independent runs for each m have been carried out. The shaded area indicates better performance than GParareal. Figure: NN-GParareal, empirical distribution of the speed-up across values of m for Thomas labyrinth. 200 independent runs for each m have been carried out. The shaded area indicates better performance than GParareal. # ODE/PDE Systems The FitzHugh-Nagumo (FHN) is a model for an animal nerve axon (Nagumo et al., 1962). It is a reasonably easy system to learn, does not exhibit chaotic behavior, and is commonly used throughout the literature. It is described by the following equations $$\frac{\mathrm{d}u_1}{\mathrm{d}t}=c\left(u_1-\frac{u_1^3}{3}+u_2\right),\quad \frac{\mathrm{d}u_2}{\mathrm{d}t}=-\frac{1}{c}\left(u_1-a+bu_2\right),$$ with (a,b,c)=0.2,0.2,3. We integrate over $t\in[0,40]$ using N=40 intervals, taking $u_0=(-1,1)$ as the initial condition. We use Runge-Kutta 2 with 160 steps for the coarse solver \mathscr{G} , and Ruge-Kutta 4 with $1.6e^5$ steps for the fine solver \mathscr{F} . This is the same setting as Pentland et al. (2023), which allows almost direct comparison, although our system is the normalized version of the above, which also applies to u_0 . We use a (normalized) error $\epsilon=5e^{-7}$. #### Systems: Rossler The Rossler is a model for turbulence (Rössler, 1976) $$\frac{\mathrm{d}u_1}{\mathrm{d}t}=-u_2-u_3,\quad \frac{\mathrm{d}u_2}{\mathrm{d}t}=u_1+\hat{a}u_2,\quad \frac{\mathrm{d}u_3}{\mathrm{d}t}=\hat{b}+u_3\left(u_1-\hat{c}\right).$$ When $(\hat{a}, \hat{b}, \hat{c}) = (0.2, 0.2, 5.7)$, it exhibits chaotic behavior. This configuration is commonly used throughout the literature. We integrate over $t \in [0,340]$ using N=40 intervals, taking $u_0=(0,-6.78,0.02)$ as initial condition. We use Runge-Kutta 1 with $9e^4$ steps for the coarse solver \mathscr{G} , and Ruge-Kutta 4 with $4.5e^8$ steps for the fine solver \mathscr{F} . This is the same setting as Pentland et al. (2023), although, like above, we use the normalized version and set a normalized $\epsilon=5e^{-7}$. #### Systems: Non-linear Hopf bifurcation This is a non-linear model for the study of Hopf bifurcations, see Seydel (2009, pg. 72) for a detailed explanation. The model is defined by the following equations $$\frac{du_1}{dt} = -u_2 + u_1(\frac{t}{T} - u_1^2 - u_2^2), \quad \frac{du_2}{dt} = u_1 + u_2(\frac{t}{T} - u_1^2 - u_2^2), \quad (2)$$ where we note the dependence on time. To counter that, we add time as an additional coordinate, thus yielding a d=3 system. We integrate over $t\in[-20,500]$ using N=32 intervals, taking $u_0=(0.1,0.1,500)$ as initial condition. We use Runge-Kutta 1 with 2048 steps for the coarse solver \mathscr{G} , and Ruge-Kutta 8 with $5.12e^5$ steps for the fine solver \mathscr{F} . This is the same setting as Pentland et al. (2023), although, like above, we use the normalized version and set a normalized $\epsilon=5e^{-7}$. #### Systems: Brusselator The Brusselator models an autocatalytic chemical reaction (Lefever and Nicolis, 1971). It is a stiff, non-linear ODE, and the following equations govern it $$\begin{aligned} \frac{du_1}{dt} &= A + u_1^2 u_2 - (B+1)u_1, \\ \frac{du_2}{dt} &= Bu_1 - u_1^2 u_2, \end{aligned}$$ where (A,B)=(1,3). We integrate over $t\in[0,100]$ using N=32 intervals, taking $u_0=(1,3.7)$ as initial condition. We use Runge-Kutta 4 with $2.5e^2$ steps for the coarse solver \mathscr{G} , and Ruge-Kutta 4 with $2.5e^4$ steps for the fine solver \mathscr{F} . We use the normalized version and set a normalized $\epsilon=5e^{-7}$. # Systems: Double pendulum This is a model for a double pendulum, adapted from Danby (1997). It consists of a simple pendulum of mass m and rod length ℓ connected to another simple pendulum of equal mass m and rod length ℓ , acting under gravity g. The model is defined by the following equations $$\begin{split} \frac{\mathrm{d}u_1}{\mathrm{d}t} &= u_3, \\ \frac{\mathrm{d}u_2}{\mathrm{d}t} &= u_4, \\ \frac{\mathrm{d}u_3}{\mathrm{d}t} &= \frac{-u_3^2 f_1 \left(u_1, u_2 \right) - u_4^2 \sin \left(u_1 - u_2 \right) - 2 \sin \left(u_1 \right) + \cos \left(u_1 - u_2 \right) \sin \left(u_2 \right)}{f_2 \left(u_1, u_2 \right)}, \\ \frac{\mathrm{d}u_4}{\mathrm{d}t} &= \frac{2u_3^2 \sin \left(u_1 - u_2 \right) + u_4^2 f_1 \left(u_1, u_2 \right) + 2 \cos \left(u_1 - u_2 \right) \sin \left(u_1 \right) - 2 \sin \left(u_2 \right)}{f_2 \left(u_1, u_2 \right)}. \end{split}$$ where $$f_1(u_1, u_2) = \sin(u_1 - u_2)\cos(u_1 - u_2),$$ $f_2(u_1, u_2) = 2 - \cos^2(u_1 - u_2).$ #### Systems: Double pendulum In the above, m,ℓ , and g have been scaled out of the system by letting $\ell=g$. The variables u_1 and u_2 measure the angles between each pendulum and the vertical axis, while u_3 and u_4 measure the corresponding angular velocities. The system exhibits chaotic behavior and is commonly used in the literature. Based on the initial condition, it can be difficult to learn. We integrate over $t \in [0,80]$ using N=32 intervals, taking $u_0=(-0.5,0,0,0)$ as initial condition. We use Runge-Kutta 1 with 3104 steps for the coarse solver \mathscr{G} , and Ruge-Kutta 8 with $2.17e^5$ steps for the fine solver \mathscr{F} . This is a similar setting as Pentland et al. (2023, Figure 4.10), although, like above, we use the normalized version and set a normalized $\epsilon=5e^{-7}$. ## Systems: Lorenz The Lorenz system is a simplified model for weather prediction Lorenz, 1963. With the following parameters, it is a chaotic system governed by the equations $$\begin{aligned} \frac{du_1}{dt} &= \gamma_1 (u_2 - u_1), \\ \frac{du_2}{dt} &= \gamma_2 u_1 - u_1 u_3 - u_2, \\ \frac{du_3}{dt} &= u_1 u_2 - \gamma_3 u_3, \end{aligned}$$ with $(\gamma_1, \gamma_2, \gamma_3) = (10, 28, 8/3)$. We integrate over $t \in [0, 18]$ using N = 50 intervals, taking $u_0 = (-15, -15, 20)$ as initial condition. We use Runge-Kutta 4 with $3e^2$ steps for the coarse solver \mathscr{G} , and Ruge-Kutta 4 with $2.25e^4$ steps for the fine solver \mathscr{F} . We use the normalized version and set a normalized $\epsilon = 5e^{-7}$. # Systems: Thomas labyrinth Thomas (1999) has proposed a particularly simple three-dimensional system representative of a large class of auto-catalytic models that occur frequently in chemical reactions (Rasmussen et al., 1990), ecology (Deneubourg and Goss, 1989), and evolution (Kauffman, 1993). It is described by the following equations $$\begin{cases} \frac{dx}{dt} = b \sin y - ax, \\ \frac{dy}{dt} = b \sin z - ay, \\ \frac{dz}{dt} = b \sin x - az, \end{cases}$$ (3) where (a,b)=(0.5,10). We integrate over $t\in [0,10]$ for $N=32,64,\ t\in [0,40]$ for $N=128,\ and\ t\in [0,100]$ for N=256,512 intervals. Following Gilpin (2021), we take $$u_0 = (4.6722764, 5.2437205e^{-10}, -6.4444208e^{-10})$$ as initial condition, for which the system exhibits chaotic dynamics. Further, we use Runge-Kutta 1 with 10N steps for the coarse solver \mathscr{G} and Ruge-Kutta 4 with $1e^9$ steps for the fine solver \mathscr{F} . # Systems: Viscous Burgers' equation The viscous Burgers' equation is a fundamental PDE describing convection-diffusion occurring in various areas of applied mathematics. It is one-dimensional and defined as $$v_t = \nu v_{xx} - v v_x \quad (x, t) \in (-L, L) \times (t_0, t_N],$$ (4) with initial condition $v(x, t_0) = v_0(x), x \in [-L, L]$, and boundary conditions $$v(-L,t) = v(L,t), \quad v_x(-L,t) = v_x(L,t), \quad t \in [t_0, T_N].$$ In the above, ν is the diffusion coefficient. We discretize the spatial domain using finite difference (Fornberg, 1988) and d+1 equally spaced points $x_{j+1}=x_j+\Delta x$, where $\Delta x=2L/d$ and j=0,...,d. # Systems: Viscous Burgers' equation In the numerical experiments, we consider two values for the time horizon, $t_N=5$ and $t_N=5.9$, with $t_0=0$. We set N=d=128 and take L=1 and $\nu=1/100$. The discretization and finite difference formulation imply that it is equivalent to solving a d-dimensional system of ODEs. We take $v_0(x) = 0.5(\cos(\frac{9}{2}\pi x) + 1)$ as the initial condition. We use Runge-Kutta 1 with 4N steps for the coarse solver $\mathscr G$ and Ruge-Kutta 8 with $5.12e^6$ steps for the fine solver $\mathscr F$. We use the normalized version with a normalized $\epsilon = 5e^{-7}$. The two-dimensional, non-linear FitzHugh-Nagumo PDE model (Ambrosio and Françoise, 2009) is an extension of the ODE system in Slide 43. It represents a set of cells constituted by a small nucleus of pacemakers near the origin immersed among an assembly of excitable cells. The simpler FHN ODE system only considers one cell and its corresponding spike generation behavior. It is defined as $$v_{t} = a\nabla^{2}v + v - v^{3} - w - c, \quad (x, t) \in (-L, L)^{2} \times (t_{0}, t_{N}]$$ $$w_{t} = \tau \left(b\nabla^{2}w + v - w\right),$$ (5) with initial conditions $$v(x, t_0) = v_0(x), w(x, t_0) = w_0(x), x \in [-L, L],$$ and boundary conditions $$v((x,-L),t) = v((x,L),t)$$ $$v((-L,y),t) = v((L,y),t)$$ $$v_y((x,-L),t) = v_y((x,L),t)$$ $$v_x((-L,y),t) = v_x((L,y),t), t \in [t_0,t_N].$$ The boundary conditions for w are equivalent and not repeated. We discretize both spatial dimensions using finite difference and \tilde{d} equally spaced points, yielding an ODE with $d=2\tilde{d}^2$ dimensions. In the numerical experiments, we consider four values for $\tilde{d}=10,12,14,16$, corresponding to d=200,288,392,512. We set $N=512,\ L=1,\ t_0=0$, and take $v_0(x),w(0)$ randomly sampled from $[0,1]^d$ as the initial condition. We use Ruge-Kutta 8 with 10^8 steps for the fine solver \mathscr{F} . We use the normalized version with a normalized $\epsilon = 5e^{-7}$. The time span and coarse solvers depend on \tilde{d} , Table 2 describes their relation. This is to provide a realistic experiment where the user would need to adjust the coarse solver based on t_N-t_0 . | d | \mathscr{G} | ${\mathscr G}$ steps | t_N | |-----|---------------|----------------------|----------------| | 200 | RK2 | 3 <i>N</i> | $t_N = 150$ | | 288 | RK2 | 12 <i>N</i> | $t_N = 550$ | | 392 | RK2 | 25 <i>N</i> | $t_N = 950$ | | 512 | RK4 | 25 N | $t_{N} = 1100$ | Table: Simulation setup for the two-dimensional FitzHugh-Nagumo PDE. Adjusting the coarse solver based on the time horizon t_N makes the simulation more realistic.