
RWParareal: a time-parallel PDE solver

using Random Weights Neural Networks

Guglielmo Gattiglio
University of Warwick

May 1, 2024

Joint work with:
Lyudmila Grigoryeva, University of St. Gallen

Massimiliano Tamborrino, University of Warwick



Parareal [LMT01].

Sketch of the procedure

Computational cost

GParareal [Pen+23].

Empirical results

Computational cost

Nearest Neighbor GParareal

Empirical results

Computational cost

Random Weights Neural Networks Parareal New!

Random Weights Neural Networks Theory

Empirical results

Computational cost



Parareal (Lions et al. [LMT01])



Parareal - Sketch of behavior - 1D System
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We wish to solve the d-dimensional ODE du
dt

= h(u(t), t) on t ∈ [t0, tN ], with

u (t0) = u0, N ∈ N, and u0 ∈ Rd ; here d = 1.



Parareal - Sketch of behavior - 1D System
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We divide the time interval in N sub-intervals and assign one processor for each. The
initial conditions U i , i = 1, ...,N − 1 are unknown and need to be estimated.



Parareal - Sketch of behavior - 1D System
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We run a cheap (fast), inaccurate coarse solver G to provide approximate initial
conditions Uk

i for iteration k = 0 (initialization) and all intervals i = 1, ...,N − 1.



Parareal - Sketch of behavior - 1D System
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Once some initial conditions are available, we can run a precise (slow) fine solver F in
parallel over the N processors, each started from an initial condition U0

i .



Parareal - Sketch of behavior - 1D System
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The initial conditions are then sequentially updated to satisfy a continuity condition,
using the Parareal predictor-corrector rule

Uk
i = G (Uk

i−1) + F (Uk−1
i−1 )− G (Uk−1

i−1 )



A generic Parareal algorithm

The Parareal predictor-corrector rule can be generalized to a) use
data from the current iteration k + 1 and b) account for different
ways of computing the discrepancy F − G

Uk
i = G (Uk

i−1) + f̂ (Uk
i−1), (1)

where f̂ : Rd → Rd models F − G . Parareal uses

f̂Para(Uk
i−1) = (F − G )(Uk−1

i−1 ).

To evaluate Parareal’s performance we use the parallel speed-up
Salg := TSerial/Talg, where

TSerial is the cost of running F sequentially over [t0, tN ]

Talg is the runtime ofthe parallel procedure (Parareal)



A generic speed-up calculation

Assume that running F over one interval [ti , ti+1] takes TF time,
and similarly for G , and let Kalg be the iterations to convergence,

Salg ≈
(
Kalg

N
+ sequential cost

(
TG

TF

)
+

Tmdl

NTF

)−1

≤
(
Kalg

N

)−1

,

where Tmdl is the overall cost of evaluating f̂ .

Parareal has TPara ∈ O(1) and is efficient when KPara < N and
TG /TF << 1.

How can we improve on this?

Keep G fixed and reduce KPara.



GParareal (Pentland et al. [Pen+23])



GParareal (Pentland et al. [Pen+23])

GParareal stores all the discrepancies (F − G ) into a dataset Dk

of cardinality |Dk | = NK by iteration k

Dk := {(U j
i−1, (F − G )(U j

i−1)), i = 1, . . . ,N, j = 0, . . . , k − 1},

and models each coordinate s = 1, . . . , d of f̂ (Uk
i−1) through a

Gaussian process (GP), using the posterior mean µ

f̂GP(Uk
i−1)s = µ

(s)
Dk

(Uk
i−1) ∈ R,

thereby training d different models, one per ODE coordinate.

Since evaluating µ involves inverting a |Dk | × |Dk | matrix, TGP(k)
scales as O((d/N ∨ 1)k3N3), with ∨ the minimum operator, giving

TGP =

KGPara∑
k=1

TGP(k) ∈ O
(
(d/N ∨ 1)K 4

GParaN
3
)
> TPara ∈ O(1)



Recall
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GParareal (Pentland et al. [Pen+23])

System Parareal GParareal
FitzHugh–Nagumo (FHN) 11 5
Rossler 18 13
Hopf 19 10
Brusselator 19 20
Lorenz 15 11
Double Pendulum 15 10

Comparison of performance for common ODE systems in the literature,
described in Slides 50-56.



GParareal - Performance - Hopf bifurcations
To showcase the empirical performance of GParareal, consider a
non-linear model for the study of Hopf bifurcations ([Sey09, pg.
72]; also Slide 52), defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (2)

where we note the dependence on time. In practice, we add time
as an additional coordinate yielding a d = 3 autonomous system.

Image taken from Pentland et al. [Pen+23]



GParareal - Performance - Hopf bifurcations
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GParareal - Improvements

How can we improve? Maintain K ≤ KGPara∗ while reducing TGP∗.

The GP cost comes from the sample size O(Nk) by iteration k .
Can we reduce the sample size without affecting performance?

Yes, we can fit the model using a small subset consisting of the
nearest neighbors to the prediction point. This is sufficient to
smooth locally because very few poin ts are empirically close in
Euclidean distance.



Nearest Neighbor GParareal
(NN-GParareal)



NN-GParareal

Whereas GParareal trains the GP once per iteration k on Dk ,
NN-GParareal is re-trained every time a prediction f̂ (Uk

i−1) is
made, on a subset Di−1,k ⊂ Dk with cardinality |Di−1,k | = m

Di−1,k := {m nearest neighbors (NN) of Uk
i−1}.

This is known as a nearest neighbor Gaussian process (NNGP).

Using the reduced dataset, NN-GParareal models f̂ as

f̂GP(Uk
i−1)s = µ

(s)
Di−1,k

(Uk
i−1),

at a cost of (assuming KNN-GPara iterations to convergence)

TNNGP ∈ O
(
(d/N ∨ 1)KNN-GParaN(m3 + log(KNN-GParaN)

)
,

loglinear in N, instead of cubic as GParareal.



NN-GParareal - visualizing Di−1,k
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Figure: Visualization of the dataset for the two-dimensional Brusselator system (53)
Left, a scatterplot of the observation U accumulated by iteration 6 (gray), with the
test observation U6

30 (blue). In red are the m = 15 nearest neighbors to the test
observations. Note how far most points are from U6

30. The right plot makes this easier
to see by displaying the absolute (log) distance coordinate-wise between U ∈ U and
U6
30.



NN-GParareal - Performance

System Parareal GParareal NN-GParareal
FitzHugh–Nagumo 11 5 5
Rossler 18 13 12
Hopf 19 10 9
Brusselator 19 20 17
Lorenz 15 11 9
Double Pendulum 15 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 50-56.



NN-GParareal - Performance - Hopf bifurcations
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NN-GParareal - Performance - FitzHugh-Nagumo PDE

We explore the performance of Parareal and its variants on a
high-dimensional system. We use the two-dimensional, non-linear
FitzHugh-Nagumo PDE model [AF09]. See also Slide 60.

It represents a set of cells constituted by a small nucleus of
pacemakers near the origin immersed among an assembly of
excitable cells. The simpler FHN ODE system only considers one
cell and its corresponding spike generation behavior.

We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.

We consider d̃ = 10, 12, 14, 16, corresponding to
d = 200, 288, 392, 512, and set N = 512.



NN-GParareal - Performance - FitzHugh-Nagumo PDE
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Figure: Plot of speed-ups for Parareal and its variants for the FitzHugh-Nagumo PDE
model. The speed-ups are computed according to the formulas above. For
N = 256, 512, GParareal failed to converge within the computational time budget of
48 hours.



Recap

GParareal:

Pro: Accelerated convergence compared to Parareal.

Con: Infeasible for moderate numbers of processors N and
ODE dimension d , limiting applicability beyond toy examples.

Con: It requires one model per ODE dimension.

Con: Hyperparameter optimization via log-likelihood
maximization is very expensive. Usually non-convex.



Recap

Nearest-Neighbors GParareal:

Pro: Achieves drastic data reduction maintaining or improving
performance.

Pro: The model is re-trained for every prediction, partially
relaxing the stationarity assumption.

Pro: Reduced computational complexity from cubic to
loglinear. Verified empirical scalability in N and d (limited).

Pro: The algorithm runtime can be estimated beforehand.

Con: It requires one NNGP per ODE dimension.

Con: Hyperparameter optimization via log-likelihood
maximization is still expensive. Usually non-convex.



Random Weights Neural Networks
Parareal

(RWParareal)



RWParareal
To address the remaining challenges, we deviate from the GP framework and
consider a new approach using random weights neural networks (RWNN).
RWNN is a learning paradigm for efficiently training single hidden layer
feed-forward neural networks, where both input and hidden layer weights are
randomly sampled and kept fixed throughout the training procedure.

They can be obtained as an approximation of kernel methods, known as

Random Fourier features [RR07] or as a way to avoid back-propagation in

neural networks, known as Extreme Learning Machines [HZS04] or, random

weights neural networks [Cao+18].



RWParareal

The advantages of RWNNs are their strong empirical performance,
theoretical guarantees on their universal approximating abilities
[GGO23], and the availability of a closed-form solution for the
output layer weights. Keeping the hidden layer weight fixed avoids
backpropagation, significantly reducing the runtime.

Let M denote the number of hidden neurons and HA,ζ
W (U) be a

single-hidden-layer feed-forward neural networks

HA,ζ
W (U) = W⊤σ(AU + ζ) ∈ Rd , U ∈ Rd

where

ζ ∈ RM are random input weights, ζ ∼ Pζ

A ∈ RM×d are random hidden weights, A ∼ PA

W ∈ RM×d are trainable output weights

σ : RM → RM is the activation function σ(x) = max(x , 0)).



RWParareal
After observing a dataset Dk , the output weights are estimated by
minimizing the λ-penalized squared error loss between the network
predictions and the outputs,

ŴDk
λ = arg min

W∈RM×d

 ∑
(U,Y )∈Dk

∥∥∥HA,ζ
W (U)− Y

∥∥∥2 + λ

d∑
s=1

∥∥W(·,s)
∥∥2 .

ŴDk
λ can be computed explicitly in closed form as

ŴDk
λ =

(
X⊤X + λIM

)−1
X⊤Y ,

where X ∈ RNk×M , X(j ,·) := σ(AU(j ,·) + ζ), j = 1, . . . ,Nk . Then,

f̂R(Uk
i−1) = HA,ζ

Ŵ
Di−1,k
λ

(Uk
i−1).

Note that the weights Ŵ
Di−1,k

λ are obtained using the reduced
dataset Di−1,k consisting of the nearest neighbors of Uk

i−1



RWParareal

Several hyperparameters should be tuned to control the
performance of RWNN, namely M, λ,PA and Pζ . We took
PA = Pζ ∼ Uniform(−1, 1), following known approximation
bounds for this case [GGO23, Proposition 3].

Since F − G is deterministic, we set λ = 0.

Comparing the model cost of one prediction with NN-GParareal

TNNGP(Uk
i−1) ≈ CGP(d/N ∨ 1)( m3︸︷︷︸

inversion

+ m2d︸︷︷︸
kernel eval.

)

TRW(Uk
i−1) ≈ CRW( M3︸︷︷︸

inversion

+ mMd︸ ︷︷ ︸
compute X

)

However, the constant is much smaller, CRW << CGP due to the
lack of hyperparameters optimization. Moreover, d >> N is often
the case for PDEs.

We now consider several examples.



A comment on the choice of PDEs

We evaluate RWParareal on three increasingly complex PDE
systems drawn from an extensive benchmark suite of
time-dependent PDEs [Tak+22]:

The 1D Viscous Burgers’ equation a non-linear,
one-dimensional system exhibiting hyperbolic behavior.

The 2D Diffusion-Reaction equation, a challenging benchmark
used to model biological pattern formation [Tur52].

The shallow water equations (SWEs), a system of hyperbolic
PDEs derived from the compressible Navier-Stokes equations,
exhibiting behaviors of real-world significance known to
challenge numerical integrators

We intentionally chose two hyperbolic equations (Burgers’ and
SWE) to address known Parareal issues in solving hyperbolic
systems with slow or non-convergent behavior [Bal05; SR05;
GV07; AKT16; DM13].



RWParareal - Viscous Burgers’ Equation

Viscous Burgers’ Equation is a non-linear, one-dimensional system
exhibiting hyperbolic behavior [Sch+18], described by the equation:

vt = νvxx − vvx (x , t) ∈ (−L, L)× (t0, tN ], (3)
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Numerical solution of viscous Burgers’ equation over (x , t) ∈ [−1, 1]× [0, 5.9] with
d = 1128.



Viscous Burgers’ d = 128, N = 128

Algorithm K NTG TF Model Total Speed-up

Fine - - - - 13h 10m 1
Parareal 90 0s 6m 0s 8h 54m 1.48
NN-GParareal 14 0s 6m 12m 1h 39m 7.95
RWParareal 10 0s 6m 1s 1h 4m 12.44

Viscous Burgers’ d = 1128, N = 128

Algorithm K NTG TF Model Total Speed-up

Fine - - - - 18h 14m 1
Parareal 91 0s 9m 0s 12h 57m 1.41
NN-GParareal 6 2s 9m 1h 25m 2h 17m 7.98
RWParareal 4 2s 9m 1s 34m 31.97

Speed-up scalability of Parareal, NN-GParareal (with m = 18), and RWParareal (with
m = 3 and M = 20). TF and TG refer to the runtimes per interval of the fine and
coarse solvers, respectively. K denotes the number of iterations taken to converge.
‘Model’ covers all model-related costs, including training and predicting. ‘Total’ is the
overall runtime of the algorithm, while the speed-up is computed with respect to the
cost of the sequential fine solver.



RWParareal - 2D Diffusion-Reaction Equation
The Diffusion-Reaction equation is a system of two non-linearly coupled
variables, the activator u = u(t, x , y) and the inhibitor v = v(t, x , y), defined
on a two-dimensional domain

∂tu = Du∂xxu + Du∂yyu + Ru, ∂tv = Dv∂xxv + Dv∂yyv + Rv ,

where Du and Dv are the diffusion coefficient for the activator and inhibitor,

respectively, and Ru = Ru(u, v) and Rv = Rv (u, v) are the activator and

inhibitor reaction function, respectively.
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Numerical solution of the Diffusion-Reaction equation over (x , y) ∈ [−1, 1]2 with
Nx = Ny = 235 for a range of system times t. Only the activator u(t, x , y) is plotted.
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Plot of speed-ups (left) and runtime (right) for Parareal, NN-GParareal (with
mNN = 20), and RWParareal (with mR = 3 and M = 20) for the 2D
Diffusion-Reaction equation as a function of the system dimension d (bottom x-axis)
and the number of cores N (top x-axis). N is capped at 512 cores to simulate limited
resources.



RWParareal - Shallow Water Equations (SWEs)
The SWEs are used to model free-surface flow problems. On a two-dimensional
domain, they are described by a system of hyperbolic PDEs

∂th +∇hu = 0, ∂thu+∇
(
u2h +

1

2
grh

2

)
= −grh∇b,

where u = u, v represents the velocities in the horizontal and vertical direction,

respectively. h denotes the water depth, b describes a spatially varying

bathymetry, and hu is interpreted as the directional momentum components.
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Numerical solution of the SWEs over (x , y) ∈ [−5, 5]× [0, 5] with Nx = 264 and
Ny = 133 for a range of system times t. Only the water depth h (blue) is plotted.



Table: Speed-up analysis for the Shallow Water Equation

d KP KR TF TP TR SP SR

15453 52 14 22h 54m 5h 8m 1h 25m 4.47 16.24
31104 50 13 3d 2h 15h 43m 4h 9m 4.68 17.77
60903 14 9 13d 15h 19h 30m 12h 34m 16.74 25.97
105336 8 6 38d 4h 1d 7h 23h 30m 29.35 38.98

Speed-up study of the SWEs for the fine solver, Parareal, NN-GParareal (with
mNN = 20) and RWParareal (with mR = 4 and M = 20), denoted by the subscripts
P, NN, F, and R , respectively. d denotes the dimension of the corresponding ODE
system.

We have

KP , KR : iterations to convergence for Parareal and RWParareal

TF , TP , TR : wallclock runtime for F , Parareal, and RWParareal

SP , SR : observed speed-up of Parareal and RWParareal



Wrapping up

What have we learned?

GParareal:

Pro: Accelerated convergence compared to Parareal.

Con: Infeasible for moderate numbers of processors N and
ODE dimension d , limiting applicability beyond toy examples.

Con: It requires one model per ODE dimension.

Con: Hyperparameter optimization via log-likelihood
maximization is very expensive. Usually non-convex.



Wrapping up

Nearest-Neighbors GParareal:

Pro: Achieves drastic data reduction maintaining or improving
performance.

Pro: The model is re-trained for every prediction, partially
relaxing the stationarity assumption.

Pro: Reduced computational complexity from cubic to
loglinear. Verified empirical scalability in N and d (limited).

Pro: The algorithm runtime can be estimated beforehand.

Con: It requires one NNGP per ODE dimension.

Con: Hyperparameter optimization via log-likelihood
maximization is still expensive. Usually non-convex.



Wrapping up

Random weights neural networks Parareal:

All NN-GParareal advantages, plus

Pro: One model learns all d coordinates

Pro: No hyperparameter optimization needed, training about
x1000 faster than GPs

Pro: Convex optimization problem with closed-form solution

Pro: Universal approximation guarantees

Pro: Drastically improved scalability in d , up to 105 spatial
discretization points

Con: Overall performance still affected by G .

Further research question:

Include uncertainty estimation for the algorithm’s solution
(probabilistic numerics).
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ODE/PDE Systems



Systems: FitzHugh–Nagumo

The FitzHugh-Nagumo (FHN) is a model for an animal nerve axon
[NAY62]. It is a reasonably easy system to learn, does not exhibit
chaotic behavior, and is commonly used throughout the literature.
It is described by the following equations

du1
dt

= c

(
u1 −

u31
3

+ u2

)
,

du2
dt

= −1

c
(u1 − a+ bu2) ,

with (a, b, c) = 0.2, 0.2, 3. We integrate over t ∈ [0, 40] using
N = 40 intervals, taking u0 = (−1, 1) as the initial condition. We
use Runge-Kutta 2 with 160 steps for the coarse solver G , and
Ruge-Kutta 4 with 1.6e5 steps for the fine solver F . This is the
same setting as Pentland et al. [Pen+23], which allows almost
direct comparison, although our system is the normalized version
of the above, which also applies to u0. We use a (normalized) error
ϵ = 5e−7.



Systems: Rossler

The Rossler is a model for turbulence [Rös76]

du1
dt

= −u2 − u3,
du2
dt

= u1 + âu2,
du3
dt

= b̂ + u3 (u1 − ĉ) .

When (â, b̂, ĉ) = (0.2, 0.2, 5.7), it exhibits chaotic behavior. This
configuration is commonly used throughout the literature. We
integrate over t ∈ [0, 340] using N = 40 intervals, taking
u0 = (0,−6.78, 0.02) as initial condition. We use Runge-Kutta 1
with 9e4 steps for the coarse solver G , and Ruge-Kutta 4 with
4.5e8 steps for the fine solver F . This is the same setting as
Pentland et al. [Pen+23], although, like above, we use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Non-linear Hopf bifurcation

This is a non-linear model for the study of Hopf bifurcations, see
Seydel [Sey09, pg. 72] for a detailed explanation. The model is
defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (4)

where we note the dependence on time. To counter that, we add
time as an additional coordinate, thus yielding a d = 3 system. We
integrate over t ∈ [−20, 500] using N = 32 intervals, taking
u0 = (0.1, 0.1, 500) as initial condition. We use Runge-Kutta 1
with 2048 steps for the coarse solver G , and Ruge-Kutta 8 with
5.12e5 steps for the fine solver F . This is the same setting as
Pentland et al. [Pen+23], although, like above, we use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Brusselator

The Brusselator models an autocatalytic chemical reaction [LN71].
It is a stiff, non-linear ODE, and the following equations govern it

du1
dt

= A+ u21u2 − (B + 1)u1,

du2
dt

= Bu1 − u21u2,

where (A,B) = (1, 3). We integrate over t ∈ [0, 100] using N = 32
intervals, taking u0 = (1, 3.7) as initial condition. We use
Runge-Kutta 4 with 2.5e2 steps for the coarse solver G , and
Ruge-Kutta 4 with 2.5e4 steps for the fine solver F . We use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Double pendulum

This is a model for a double pendulum, adapted from Danby
[Dan97]. It consists of a simple pendulum of mass m and rod
length ℓ connected to another simple pendulum of equal mass m
and rod length ℓ, acting under gravity g . The model is defined by
the following equations

du1
dt

= u3,

du2
dt

= u4,

du3
dt

=
−u23f1 (u1, u2)− u24 sin (u1 − u2)− 2 sin (u1) + cos (u1 − u2) sin (u2)

f2 (u1, u2)
,

du4
dt

=
2u23 sin (u1 − u2) + u24f1 (u1, u2) + 2 cos (u1 − u2) sin (u1)− 2 sin (u2)

f2 (u1, u2)
,

where
f1 (u1, u2) = sin (u1 − u2) cos (u1 − u2) ,

f2 (u1, u2) = 2− cos2 (u1 − u2) .



Systems: Double pendulum

In the above, m, ℓ, and g have been scaled out of the system by
letting ℓ = g . The variables u1 and u2 measure the angles between
each pendulum and the vertical axis, while u3 and u4 measure the
corresponding angular velocities.

The system exhibits chaotic behavior and is commonly used in the
literature. Based on the initial condition, it can be difficult to learn.

We integrate over t ∈ [0, 80] using N = 32 intervals, taking
u0 = (−0.5, 0, 0, 0) as initial condition. We use Runge-Kutta 1
with 3104 steps for the coarse solver G , and Ruge-Kutta 8 with
2.17e5 steps for the fine solver F . This is a similar setting as
Pentland et al. [Pen+23, Figure 4.10], although, like above, we use
the normalized version and set a normalized ϵ = 5e−7.



Systems: Lorenz

The Lorenz system is a simplified model for weather prediction
[Lor63]. With the following parameters, it is a chaotic system
governed by the equations

du1
dt

= γ1 (u2 − u1) ,

du2
dt

= γ2u1 − u1u3 − u2,

du3
dt

= u1u2 − γ3u3,

with (γ1, γ2, γ3) = (10, 28, 8/3). We integrate over t ∈ [0, 18]
using N = 50 intervals, taking u0 = (−15,−15, 20) as initial
condition. We use Runge-Kutta 4 with 3e2 steps for the coarse
solver G , and Ruge-Kutta 4 with 2.25e4 steps for the fine solver
F . We use the normalized version and set a normalized ϵ = 5e−7.



Systems: Thomas labyrinth
Thomas [Tho99] has proposed a particularly simple
three-dimensional system representative of a large class of
auto-catalytic models that occur frequently in chemical reactions
[Ras+90], ecology [DG89], and evolution [Kau93]. It is described
by the following equations

dx
dt = b sin y − ax ,
dy
dt = b sin z − ay ,
dz
dt = b sin x − az ,

(5)

where (a, b) = (0.5, 10). We integrate over t ∈ [0, 10] for
N = 32, 64, t ∈ [0, 40] for N = 128, and t ∈ [0, 100] for
N = 256, 512 intervals. Following Gilpin [Gil21], we take

u0 = (4.6722764, 5.2437205e−10,−6.4444208e−10)

as initial condition, for which the system exhibits chaotic dynamics.
Further, we use Runge-Kutta 1 with 10N steps for the coarse
solver G and Ruge-Kutta 4 with 1e9 steps for the fine solver F .



Systems: Viscous Burgers’ equation

The viscous Burgers’ equation is a fundamental PDE describing
convection-diffusion occurring in various areas of applied
mathematics. It is one-dimensional and defined as

vt = νvxx − vvx (x , t) ∈ (−L, L)× (t0, tN ], (6)

with initial condition v(x , t0) = v0(x), x ∈ [−L, L], and boundary
conditions

v(−L, t) = v(L, t), vx(−L, t) = vx(L, t), t ∈ [t0,TN ].

In the above, ν is the diffusion coefficient. We discretize the
spatial domain using finite difference [For88] and d + 1 equally
spaced points xj+1 = xj +∆x , where ∆x = 2L/d and j = 0, ..., d .



Systems: Viscous Burgers’ equation

In the numerical experiments, we consider two values for the time
horizon, tN = 5 and tN = 5.9, with t0 = 0. We set N = d = 128
and take L = 1 and ν = 1/100. The discretization and finite
difference formulation imply that it is equivalent to solving a
d-dimensional system of ODEs.

We take v0(x) = 0.5(cos(92πx) + 1) as the initial condition. We
use Runge-Kutta 1 with 4N steps for the coarse solver G and
Ruge-Kutta 8 with 5.12e6 steps for the fine solver F .

We use the normalized version with a normalized ϵ = 5e−7.



Systems: FitzHugh-Nagumo PDE

The two-dimensional, non-linear FitzHugh-Nagumo PDE model
[AF09] is an extension of the ODE system in Slide 50. It represents
a set of cells constituted by a small nucleus of pacemakers near the
origin immersed among an assembly of excitable cells. The simpler
FHN ODE system only considers one cell and its corresponding
spike generation behavior.

It is defined as

vt = a∇2v + v − v3 − w − c , (x , t) ∈ (−L, L)2 × (t0, tN ]

wt = τ
(
b∇2w + v − w

)
,

(7)

with initial conditions

v(x , t0) = v0(x),w(x , t0) = w0(x), x ∈ [−L, L],



Systems: FitzHugh-Nagumo PDE

and boundary conditions

v((x ,−L), t) = v((x , L), t)

v((−L, y), t) = v((L, y), t)

vy ((x ,−L), t) = vy ((x , L), t)

vx((−L, y), t) = vx((L, y), t), t ∈ [t0, tN ].

The boundary conditions for w are equivalent and not repeated.
We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.



Systems: FitzHugh-Nagumo PDE

In the numerical experiments, we consider four values for
d̃ = 10, 12, 14, 16, corresponding to d = 200, 288, 392, 512. We set
N = 512, L = 1, t0 = 0, and take v0(x),w(0) randomly sampled
from [0, 1]d as the initial condition.

We use Ruge-Kutta 8 with 108 steps for the fine solver F . We use
the normalized version with a normalized ϵ = 5e−7.

The time span and coarse solvers depend on d̃ , Table 2 describes
their relation. This is to provide a realistic experiment where the
user would need to adjust the coarse solver based on tN − t0.



Systems: FitzHugh-Nagumo PDE

d G G steps tN
200 RK2 3N tN = 150
288 RK2 12N tN = 550
392 RK2 25N tN = 950
512 RK4 25N tN = 1100

Table: Simulation setup for the two-dimensional FitzHugh-Nagumo PDE. Adjusting
the coarse solver based on the time horizon tN makes the simulation more realistic.
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