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Introduction

In this talk, we consider machine-learning-based approaches to
speed up Parareal [LMT01], a parallel-in-time solver for ODEs and
PDEs. Why is time parallelization important?

Space parallelization has been a widely use technique for
solving PDEs on multiple processors.

In plasma physics and other fields, these traditional techniques
often reach saturation on modern supercomputers, thus
leaving time parallelization as the only avenue for
improvement [Sam+19].

Simulations of molecular dynamics often involve averages over
very long trajectories of stochastic dynamics. Space
parallelization is thus useless to reduce the wall clock time
requirements [Gor+22]
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Parareal (Lions et al. [LMT01])



Parareal - Sketch of behavior - 1D System
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We wish to solve the d-dimensional ODE du
dt

= h(u(t), t) on t ∈ [t0, tN ], with

u (t0) = u0, N ∈ N, and u0 ∈ Rd ; here d = 1.



Parareal - Sketch of behavior - 1D System
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We divide the time interval in N sub-intervals and assign one processor for each. The
initial conditions U i , i = 1, ...,N − 1 are unknown and need to be estimated.



Parareal - Sketch of behavior - 1D System

t0 t2 t4 t6 t8 tN
Time t

0

1

2

3

4

5

So
lu

tio
n 

u(
t)

U0
0

U0
1

U0
2

U0
3

U0
4

U0
5

U0
6

U0
7

U0
8

U0
9

Iteration k = 0 Sequential, running 

Truth
(U1

i )

We run a cheap (fast), inaccurate coarse solver G to provide approximate initial
conditions Uk

i for iteration k = 0 (initialization) and all intervals i = 1, ...,N − 1.



Parareal - Sketch of behavior - 1D System
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Once some initial conditions are available, we can run a precise (slow) fine solver F in
parallel over the N processors, each started from an initial condition U0

i .



Parareal - Sketch of behavior - 1D System
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The initial conditions are then sequentially updated to satisfy a continuity condition,
using the Parareal predictor-corrector rule

Uk
i = G (Uk

i−1) + F (Uk−1
i−1 )− G (Uk−1

i−1 )



A generic Parareal algorithm

The Parareal predictor-corrector rule can be generalized to a) use
data from the current iteration k + 1 and b) account for different
ways of computing the discrepancy F − G

Uk
i = G (Uk

i−1) + f̂ (Uk
i−1), (1)

where f̂ : Rd → Rd models F − G . Parareal uses

f̂Para(Uk
i−1) = (F − G )(Uk−1

i−1 ).

To evaluate Parareal’s performance we use the parallel speed-up
Salg := TSerial/Talg, where

TSerial is the cost of running F sequentially over [t0, tN ]

Talg is the runtime ofthe parallel procedure (Parareal)



A generic speed-up calculation

Assume that running F over one interval [ti , ti+1] takes TF time,
and similarly for G , and let Kalg be the iterations to convergence,

Salg ≈
(
Kalg

N
+ serial cost

(
TG

TF

)
+

Tmdl

NTF

)−1

≤
(
Kalg

N

)−1

:= S∗
alg,

where Tmdl is the overall cost of evaluating f̂ .

Parareal has TPara ∈ O(1) and is efficient when KPara < N and
TG /TF << 1.

How can we improve on this?

Keep G fixed and reduce KPara.



GParareal (Pentland et al. [Pen+23])



GParareal (Pentland et al. [Pen+23])

GParareal stores all the discrepancies (F − G ) into a dataset Dk

of cardinality |Dk | = NK by iteration k

Dk := {(U j
i−1, (F − G )(U j

i−1)), i = 1, . . . ,N, j = 0, . . . , k − 1},

and models each coordinate s = 1, . . . , d of f̂ (Uk
i−1) through a

Gaussian process (GP), using the posterior mean µ

f̂GP(Uk
i−1)s = µ

(s)
Dk

(Uk
i−1) ∈ R,

thereby training d different models, one per ODE coordinate.

Since evaluating µ involves inverting a |Dk | × |Dk | matrix, TGP(k)
scales as O((d/N ∨ 1)k3N3), with ∨ the minimum operator, giving

TGP =

KGPara∑
k=1

TGP(k) ∈ O
(
(d/N ∨ 1)K 4

GParaN
3
)
> TPara ∈ O(1)



Recall
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GParareal (Pentland et al. [Pen+23])

System Parareal GParareal
FitzHugh–Nagumo (FHN) 11 5
Rossler 18 13
Hopf 19 10
Brusselator 19 20
Lorenz 15 11
Double Pendulum 15 10

Comparison of performance for common ODE systems in the literature,
described in Slides 37-43.



GParareal - Performance - Hopf bifurcations
To showcase the empirical performance of GParareal, consider a
non-linear model for the study of Hopf bifurcations ([Sey09, pg.
72]; also Slide 39), defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (2)

where we note the dependence on time. In practice, we add time
as an additional coordinate yielding a d = 3 autonomous system.

Image taken from Pentland et al. [Pen+23]



GParareal - Performance - Hopf bifurcations
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GParareal - Improvements

How can we improve? Maintain K ≤ KGPara∗ while reducing TGP∗.

The GP cost comes from the sample size O(Nk) by iteration k .
Can we reduce the sample size without affecting performance?

Yes, we can fit the model using a small subset consisting of the
nearest neighbors to the prediction point. This is sufficient to
smooth locally because very few poin ts are empirically close in
Euclidean distance.



Nearest Neighbor (nn) GParareal
(nnGParareal)



nnGParareal

Whereas GParareal trains the GP once per iteration k on Dk ,
nnGParareal is re-trained every time a prediction f̂ (Uk

i−1) is made,
on a subset Di−1,k ⊂ Dk with cardinality |Di−1,k | = m

Di−1,k := {m nearest neighbors (nn) of Uk
i−1}.

This is known as a nearest neighbor Gaussian process (nnGP).

Using the reduced dataset, nnGParareal models f̂ as

f̂GP(Uk
i−1)s = µ

(s)
Di−1,k

(Uk
i−1),

at a cost of (assuming KnnGPara iterations to convergence)

TnnGP ∈ O
(
(d/N ∨ 1)KnnGParaN(m3 + log(KnnGParaN)

)
,

loglinear in N, instead of cubic as GParareal.



nnGParareal - visualizing Di−1,k
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Figure: Visualization of the dataset for the two-dimensional Brusselator system (40)
Left, a scatterplot of the observation U accumulated by iteration 6 (gray), with the
test observation U6

30 (blue). In red are the m = 15 nearest neighbors to the test
observations. Note how far most points are from U6

30. The right plot makes this easier
to see by displaying the absolute (log) distance coordinate-wise between U ∈ U and
U6
30.



nnGParareal - Performance

System Parareal GParareal nnGParareal
FitzHugh–Nagumo 11 5 5
Rossler 18 13 12
Hopf 19 10 9
Brusselator 19 20 17
Lorenz 15 11 9
Double Pendulum 15 10 10

Comparison of performance for common ODE systems in the literature,
described in Slides 37-43.



nnGParareal - Performance - Hopf bifurcations
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nnGParareal - Performance - FitzHugh-Nagumo PDE

We explore the performance of Parareal and its variants on a
high-dimensional system. We use the two-dimensional, non-linear
FitzHugh-Nagumo PDE model [AF09]. See also Slide 47.

It represents a set of cells constituted by a small nucleus of
pacemakers near the origin immersed among an assembly of
excitable cells. The simpler FHN ODE system only considers one
cell and its corresponding spike generation behavior.

We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.

We consider d̃ = 10, 12, 14, 16, corresponding to
d = 200, 288, 392, 512, and set N = 512.



nnGParareal - Performance - FitzHugh-Nagumo PDE
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Figure: Plot of speed-ups for Parareal and its variants for the FitzHugh-Nagumo PDE
model. The speed-ups are computed according to the formulas above. For
N = 256, 512, GParareal failed to converge within the computational time budget of
48 hours.



Recap

GParareal:

Pro: Accelerated convergence compared to Parareal.

Con: Infeasible for moderate numbers of processors N and
ODE dimension d , limiting applicability beyond toy examples.

Con: It requires one model per ODE dimension.

Con: Hyperparameter optimization via log-likelihood
maximization is very expensive. Usually non-convex.



Recap

Nearest-Neighbors GParareal:

Pro: Achieves drastic data reduction maintaining or improving
performance.

Pro: The model is re-trained for every prediction, partially
relaxing the stationarity assumption.

Pro: Reduced computational complexity from cubic to
loglinear. Verified empirical scalability in N and d (limited).

Pro: The algorithm runtime can be estimated beforehand.

Con: It requires one nnGP per ODE dimension.

Con: Hyperparameter optimization via log-likelihood
maximization is still expensive. Usually non-convex.



Wrapping up

Random weights neural networks Parareal:

All NN-GParareal advantages, plus

Pro: One model learns all d coordinates

Pro: No hyperparameter optimization needed, training about
x1000 faster than GPs

Pro: Convex optimization problem with closed-form solution

Pro: Universal approximation guarantees

Pro: Drastically improved scalability in d , up to 105 spatial
discretization points

Con: Doesn’t compute prediction uncertainty.

Con: Overall performance still affected by G .

Further research question:

Include uncertainty estimation for the algorithm’s solution
(probabilistic numerics).



Thank you for listening, any questions?

arxiv.org/abs/2405.12182

Scan the QR code for a link to the paper!
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ODE/PDE Systems



Systems: FitzHugh–Nagumo

The FitzHugh-Nagumo (FHN) is a model for an animal nerve axon
[NAY62]. It is a reasonably easy system to learn, does not exhibit
chaotic behavior, and is commonly used throughout the literature.
It is described by the following equations

du1
dt

= c

(
u1 −

u31
3

+ u2

)
,

du2
dt

= −1

c
(u1 − a+ bu2) ,

with (a, b, c) = 0.2, 0.2, 3. We integrate over t ∈ [0, 40] using
N = 40 intervals, taking u0 = (−1, 1) as the initial condition. We
use Runge-Kutta 2 with 160 steps for the coarse solver G , and
Ruge-Kutta 4 with 1.6e5 steps for the fine solver F . This is the
same setting as Pentland et al. [Pen+23], which allows almost
direct comparison, although our system is the normalized version
of the above, which also applies to u0. We use a (normalized) error
ϵ = 5e−7.



Systems: Rossler

The Rossler is a model for turbulence [Rös76]

du1
dt

= −u2 − u3,
du2
dt

= u1 + âu2,
du3
dt

= b̂ + u3 (u1 − ĉ) .

When (â, b̂, ĉ) = (0.2, 0.2, 5.7), it exhibits chaotic behavior. This
configuration is commonly used throughout the literature. We
integrate over t ∈ [0, 340] using N = 40 intervals, taking
u0 = (0,−6.78, 0.02) as initial condition. We use Runge-Kutta 1
with 9e4 steps for the coarse solver G , and Ruge-Kutta 4 with
4.5e8 steps for the fine solver F . This is the same setting as
Pentland et al. [Pen+23], although, like above, we use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Non-linear Hopf bifurcation

This is a non-linear model for the study of Hopf bifurcations, see
Seydel [Sey09, pg. 72] for a detailed explanation. The model is
defined by the following equations

du1
dt

= −u2+u1(
t

T
−u21−u22),

du2
dt

= u1+u2(
t

T
−u21−u22), (3)

where we note the dependence on time. To counter that, we add
time as an additional coordinate, thus yielding a d = 3 system. We
integrate over t ∈ [−20, 500] using N = 32 intervals, taking
u0 = (0.1, 0.1, 500) as initial condition. We use Runge-Kutta 1
with 2048 steps for the coarse solver G , and Ruge-Kutta 8 with
5.12e5 steps for the fine solver F . This is the same setting as
Pentland et al. [Pen+23], although, like above, we use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Brusselator

The Brusselator models an autocatalytic chemical reaction [LN71].
It is a stiff, non-linear ODE, and the following equations govern it

du1
dt

= A+ u21u2 − (B + 1)u1,

du2
dt

= Bu1 − u21u2,

where (A,B) = (1, 3). We integrate over t ∈ [0, 100] using N = 32
intervals, taking u0 = (1, 3.7) as initial condition. We use
Runge-Kutta 4 with 2.5e2 steps for the coarse solver G , and
Ruge-Kutta 4 with 2.5e4 steps for the fine solver F . We use the
normalized version and set a normalized ϵ = 5e−7.



Systems: Double pendulum

This is a model for a double pendulum, adapted from Danby
[Dan97]. It consists of a simple pendulum of mass m and rod
length ℓ connected to another simple pendulum of equal mass m
and rod length ℓ, acting under gravity g . The model is defined by
the following equations

du1
dt

= u3,

du2
dt

= u4,

du3
dt

=
−u23f1 (u1, u2)− u24 sin (u1 − u2)− 2 sin (u1) + cos (u1 − u2) sin (u2)

f2 (u1, u2)
,

du4
dt

=
2u23 sin (u1 − u2) + u24f1 (u1, u2) + 2 cos (u1 − u2) sin (u1)− 2 sin (u2)

f2 (u1, u2)
,

where
f1 (u1, u2) = sin (u1 − u2) cos (u1 − u2) ,

f2 (u1, u2) = 2− cos2 (u1 − u2) .



Systems: Double pendulum

In the above, m, ℓ, and g have been scaled out of the system by
letting ℓ = g . The variables u1 and u2 measure the angles between
each pendulum and the vertical axis, while u3 and u4 measure the
corresponding angular velocities.

The system exhibits chaotic behavior and is commonly used in the
literature. Based on the initial condition, it can be difficult to learn.

We integrate over t ∈ [0, 80] using N = 32 intervals, taking
u0 = (−0.5, 0, 0, 0) as initial condition. We use Runge-Kutta 1
with 3104 steps for the coarse solver G , and Ruge-Kutta 8 with
2.17e5 steps for the fine solver F . This is a similar setting as
Pentland et al. [Pen+23, Figure 4.10], although, like above, we use
the normalized version and set a normalized ϵ = 5e−7.



Systems: Lorenz

The Lorenz system is a simplified model for weather prediction
[Lor63]. With the following parameters, it is a chaotic system
governed by the equations

du1
dt

= γ1 (u2 − u1) ,

du2
dt

= γ2u1 − u1u3 − u2,

du3
dt

= u1u2 − γ3u3,

with (γ1, γ2, γ3) = (10, 28, 8/3). We integrate over t ∈ [0, 18]
using N = 50 intervals, taking u0 = (−15,−15, 20) as initial
condition. We use Runge-Kutta 4 with 3e2 steps for the coarse
solver G , and Ruge-Kutta 4 with 2.25e4 steps for the fine solver
F . We use the normalized version and set a normalized ϵ = 5e−7.



Systems: Thomas labyrinth
Thomas [Tho99] has proposed a particularly simple
three-dimensional system representative of a large class of
auto-catalytic models that occur frequently in chemical reactions
[Ras+90], ecology [DG89], and evolution [Kau93]. It is described
by the following equations

dx
dt = b sin y − ax ,
dy
dt = b sin z − ay ,
dz
dt = b sin x − az ,

(4)

where (a, b) = (0.5, 10). We integrate over t ∈ [0, 10] for
N = 32, 64, t ∈ [0, 40] for N = 128, and t ∈ [0, 100] for
N = 256, 512 intervals. Following Gilpin [Gil21], we take

u0 = (4.6722764, 5.2437205e−10,−6.4444208e−10)

as initial condition, for which the system exhibits chaotic dynamics.
Further, we use Runge-Kutta 1 with 10N steps for the coarse
solver G and Ruge-Kutta 4 with 1e9 steps for the fine solver F .



Systems: Viscous Burgers’ equation

The viscous Burgers’ equation is a fundamental PDE describing
convection-diffusion occurring in various areas of applied
mathematics. It is one-dimensional and defined as

vt = νvxx − vvx (x , t) ∈ (−L, L)× (t0, tN ], (5)

with initial condition v(x , t0) = v0(x), x ∈ [−L, L], and boundary
conditions

v(−L, t) = v(L, t), vx(−L, t) = vx(L, t), t ∈ [t0,TN ].

In the above, ν is the diffusion coefficient. We discretize the
spatial domain using finite difference [For88] and d + 1 equally
spaced points xj+1 = xj +∆x , where ∆x = 2L/d and j = 0, ..., d .



Systems: Viscous Burgers’ equation

In the numerical experiments, we consider two values for the time
horizon, tN = 5 and tN = 5.9, with t0 = 0. We set N = d = 128
and take L = 1 and ν = 1/100. The discretization and finite
difference formulation imply that it is equivalent to solving a
d-dimensional system of ODEs.

We take v0(x) = 0.5(cos(92πx) + 1) as the initial condition. We
use Runge-Kutta 1 with 4N steps for the coarse solver G and
Ruge-Kutta 8 with 5.12e6 steps for the fine solver F .

We use the normalized version with a normalized ϵ = 5e−7.



Systems: FitzHugh-Nagumo PDE

The two-dimensional, non-linear FitzHugh-Nagumo PDE model
[AF09] is an extension of the ODE system in Slide 37. It represents
a set of cells constituted by a small nucleus of pacemakers near the
origin immersed among an assembly of excitable cells. The simpler
FHN ODE system only considers one cell and its corresponding
spike generation behavior.

It is defined as

vt = a∇2v + v − v3 − w − c , (x , t) ∈ (−L, L)2 × (t0, tN ]

wt = τ
(
b∇2w + v − w

)
,

(6)

with initial conditions

v(x , t0) = v0(x),w(x , t0) = w0(x), x ∈ [−L, L],



Systems: FitzHugh-Nagumo PDE

and boundary conditions

v((x ,−L), t) = v((x , L), t)

v((−L, y), t) = v((L, y), t)

vy ((x ,−L), t) = vy ((x , L), t)

vx((−L, y), t) = vx((L, y), t), t ∈ [t0, tN ].

The boundary conditions for w are equivalent and not repeated.
We discretize both spatial dimensions using finite difference and d̃
equally spaced points, yielding an ODE with d = 2d̃2 dimensions.



Systems: FitzHugh-Nagumo PDE

In the numerical experiments, we consider four values for
d̃ = 10, 12, 14, 16, corresponding to d = 200, 288, 392, 512. We set
N = 512, L = 1, t0 = 0, and take v0(x),w(0) randomly sampled
from [0, 1]d as the initial condition.

We use Ruge-Kutta 8 with 108 steps for the fine solver F . We use
the normalized version with a normalized ϵ = 5e−7.

The time span and coarse solvers depend on d̃ , Table 1 describes
their relation. This is to provide a realistic experiment where the
user would need to adjust the coarse solver based on tN − t0.



Systems: FitzHugh-Nagumo PDE

d G G steps tN
200 RK2 3N tN = 150
288 RK2 12N tN = 550
392 RK2 25N tN = 950
512 RK4 25N tN = 1100

Table: Simulation setup for the two-dimensional FitzHugh-Nagumo PDE. Adjusting
the coarse solver based on the time horizon tN makes the simulation more realistic.
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