RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks

38th Neural Information Processing Systems (NeurIPS 2024)

Guglielmo Gattiglio, Lyudmila Grigoryeva, Massimiliano Tamborrino Department of Statistics, University of Warwick, Coventry, UK guglielmo.gattiglio@warwick.ac.uk

https://arxiv.org/abs/2411.06225

Time parallelization: a crucial technology RandNet-Parareal ar			a glance	
	PDE System	Speed-up over Parareal	$\begin{array}{c} \mathbf{Speed-up} \\ \mathbf{over} \ \mathscr{F} \end{array}$	
	1D Viscous Burgers' 2D Diffusion-Reaction 2D shallow water	x8.6 - x21 x3 - x5 x1.3 - x3.6	x12.6 - x30 x5.4 - x124 x16 - x39	
	Rand	PDE System 1D Viscous Burgers' 2D Diffusion-Reaction 2D shallow water	RandNet-Parareal at a glancePDE SystemSpeed-up over Parareal1D Viscous Burgers'x8.6 - x212D Diffusion-Reactionx3 - x52D shallow waterx1.3 - x3.6	

Integrating data-driven learning can drastically speed-up simulations \longrightarrow

2D & 3D Brusselator x3

x3.4 - x4.4 x249 - x253

Parareal & Existing Approaches

Compute the true solution *sequentially* - slow!

RandNet-Parareal

A better model: random weight neural networks (RandNet) [6]

- Closed form solution for the RandNet output weights
- Universal approximator [7]
- Avoids back-propagation, stable and fast training
- Strong empirical performance

Focus: RandNet-Parareal on 2D Diffusion-Reaction

Approximate the initial conditions *sequentially* - inaccurate but fast

Estimate the solution in parallel - fast but still imprecise

Here, u = u(t, x, y) is the activator with coefficient D_u and reaction function $R_u = R_u(u, v)$. Similarly for the inhibitor v = v(t, x, y)

 $\partial_t u = D_u \partial_{xx} u + D_u \partial_{yy} u + R_u, \quad \partial_t v = D_v \partial_{xx} v + D_v \partial_{yy} v + R_v,$

Let \mathscr{F} be an accurate, slow numerical solver and \mathscr{G} be an imprecise, fast one. Parareal [3] updates the solution U_i^k at time t_i iteration k as

 $(\mathscr{F} - \mathscr{G})(\cdot)$ is approximated using previous iteration data, inaccurate $(\mathscr{F} - \mathscr{G})(\underbrace{\mathcal{V}_{i-1}^k}_{i-1})$ vs $(\mathscr{F} - \mathscr{G})(\underbrace{\mathcal{V}_{i-1}^{k-1}}_{i-1})$

GParareal [4]: Approximate ℱ - 𝔅 using Gaussian processes (GP)
Faster convergence but expensive to train at O(N³) cost
nnGParareal [5]: Approximate ℱ - 𝔅 using a k-nearest neighbors GP
Reduced cost O(k³), k ≪ N, but not scalable to high-dimensions

References

- (1) D. Samaddar, D. P. Coster et al., Comput. Phys. Commun., 2019, 235, 246-257.
- (2) O. Gorynina, F. Legoll et al., Comptes Rendus. Mecanique, 2023, **351**, 479–503.
- (3) J.-L. Lions, Y. Maday et al., Comptes Rendus de l'Academie des Sci. I-Mathematics, 2001, 332, 661–668.
- (4) K. Pentland, M. Tamborrino et al., Stat. Comput., 2023, **33**, 23.
- (5) G. Gattiglio, L. Grigoryeva et al., arXiv Prepr., 2024.
- (6) G.-B. Huang, Q.-Y. Zhu et al., *IEEE Int. Jt. Conf. on Neural Networks*, 2004, **2**, 985–990.
- (7) L. Gonon, L. Grigoryeva et al., The Ann. Appl. Probab., 2023, 33, 28-69.