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Motivation
Why is time parallelization for ODEs and PDEs important?
• In plasma physics and other fields, space parallelization reaches satura-

tion on modern supercomputers leaving time parallelization as the only
avenue for improvement [1].

• Simulations of molecular dynamics often involve averages over very long
trajectories of stochastic dynamics [2].
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Figure 1: Visualization of Parareal evolution on chaotic Lorenz attractor.

Existing Approaches: Parareal and GParareal
Consider a system of d ∈ N ODEs (and similarly for PDEs)

du

dt
= h(u(t), t) on t ∈ [t0, tN ] , with u (t0) = u0, (1)

where h : Rd × [t0, tN ] → Rd is a smooth multivariate function, u :
[t0, tN ] → Rd is the time dependent vector solution, and u0 ∈ Rd are
the initial values at t0. Parareal [3] solves (1) by dividing the timespan
[t0, tN ] into N initial value problems

dui

dt
= h (ui (t | Ui) , t) , t ∈ [ti, ti+1] , ui (ti) = Ui, for i = 0, ..., N − 1.

and solving them in parallel. To ensure continuity, the initial conditions
Ui are iteratively updated every Parareal iterations k

Uk
i = G

(
Uk

i−1
)

+ F
(
Uk−1

i−1
)

− G
(
Uk−1

i−1
)

, i = 1, . . . , N − 1, (2)

where F and G are numerical solvers. F is slow (hours, days), accurate,
and always executed in parallel. G is fast (seconds), inaccurate, and used
to build the approximate solution sequentially. See Figure 2.
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Figure 2: Parareal. Gray line, truth. Left, approximate initial solution G
at iteration k = 0. Right, parallel evaluations of F (blue) and sequential
evaluations of G in (2) (red lines) for iteration k = 1. The green, gray,
blue and red dots are Uk

i , G
(
Uk

i−1
)
, F

(
Uk−1

i−1
)
, and G

(
Uk−1

i−1
)

from (2).

In (2), Parareal uses data coming from the previous iteration k − 1.
GParareal [4] changes (2) to use current iteration information

Uk
i = F

(
Uk

i−1
)

= (F − G + G )
(
Uk

i−1
)

= (F − G )
(
Uk

i−1
)

+ G
(
Uk

i−1
)

.
(3)

However, this would require a serial computation of F
(
Uk

i−1
)
, defeating

parallelization. Instead, Gaussian processes (GPs) are used to predict the
correction term F − G using the known (updated) initial condition Uk

i−1.
At iteration k > 0, the GPs are trained on the dataset Dk composed of
pairs of inputs U and outputs y = (F − G )(U):

Dk = {(U j−1
i , (F − G )(U j−1

i )), i = 0, ..., N − 1, j = 1, ..., k}.

The GP posterior mean is used to predict (F − G )
(
Uk

i−1
)

in (3) as

mDk
(Uk

i−1) = K(Uk
i−1, U)T [K(U, U) + σ2

nI]−1y, (4)

where K(U, U) is the covariance matrix. The matrix inversion in (4) is
computationally expensive with a O((Nk)3) cost, cubic in the size of
the dataset Dk at iteration k. This negatively affects speed-up (Figure 4)
and makes GParareal unattractive for bigger Ns. More intervals N allows
for greater parallellization, hence the need for an alternative approach.

Nearest Neighbors GParareal New!

To overcome the computational bottleneck of GParareal, we reduce the
dataset size, thereby decreasing the matrix inversion cost. As seen in
Figure 3, most points are far from the prediction point Uk

i−1.
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Figure 3: Left, a scatterplot of D6 with the test observation Uk
i−1 = U6

30
(blue). In red are the m = 15 nearest neighbors to U6

30. Right, plot of the
absolute (log) distance coordinate-wise between U ∈ U and U6

30.

Hence, for a prediction at Uk
i−1 we can train the GP on a subset Di−1,k ⊂

Dk consisting of only m points, which we choose as the nearest neighbors
to Uk

i−1 (red dots in Figure 3). This is known in the literature as a nearest-
neighbors GP (NNGP). Provided m is small, the computational complexity
is sensibly favorable as the NNGP training cost is O(Nm3 + N log(kN) at
iteration k. The log component comes from data sorting operations.

Figure 4 shows the NN-GParareal speed-up, the ratio of running F se-
quentially as opposed to using Parareal

Speed-up = Tserial/Tparall,

where T· indicates wallclock runtime. The upper bound to the speed-up
achievable by any algorithm converging in K steps is K/N . For low values
of N , GParareal and NN-GParareal provide sensible speed-up. However,
as the number of cores increases, GParareal performs worse than Parareal
or fails to converge within reasonable time limits.
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Figure 4: Speed-up for a 2D Hopf bifurcation ODE [5] (left) and FitzHugh-
Nagumo 2D PDE [6] (right). Right, N = 512.
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